REMOVAL OF Cr(VI) FROM SIMULATED ELECTROPLATING WASTEWATER BY MAGNETITE NANOPARTICLES

Mohammad Mehdi Amin1,2, Abbas Khodabakhshi1,2,3,*, Morteza Mozafari4, Bijan Bina1,2, Soleiman Kheiri5

1Isfahan University of Medical Sciences, Environment Research Center, Hezar Jerib Avenue, Postal Code: 81676-36954, Isfahan, Iran
2Isfahan University of Medical Sciences, School of Public Health, Department of Environmental Health Engineering, Isfahan, Iran
3Shahrekord University of Medical Sciences, Shahrekord, Iran
4Razi University, Physics Department, Tagh Bostan, Kermanshah, Iran
5Shahrekord University of Medical Sciences, Health Faculty, Department of Epidemiology and Biostatistics, Shahrekord, Iran

Abstract

In this study, the efficiency of magnetic nanoparticles for removal of hexavalent chromium from simulated electroplating wastewater was evaluated. The nanoparticles were prepared using the sol-gel method and were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), a scanning electron microscopy energy dispersive X-ray analyzer (SEM-Edx), a particle sizer and a vibrating sample magnetometer (VSM). The results showed that synthesized nanoparticles were in the size range of 40-300 nm, had purity of about 90 percent, and had magnetization of 36.5 electromagnetic unit per gram (emu/g). In conditions including pH 2, Cr (VI) concentration of 10 mg/L, nanomagnetite concentration of 1 g/L, a shaking speed of 250 rpm and a 20 minute retention time, 82% of Cr(VI) was removed. Competition from common coexisting ions such as Na+, Ni2+, Cu2+, NO3-, SO42-, and Cl- was negligible. The adsorption data was well fitted by the Freundlich isotherm. It was concluded that magnetite nanoparticles have considerable potential for removal of Cr(VI) from electroplating wastewaters.

Key words: adsorption, chromium, industrial wastewater, magnetite nanoparticles

Received: May, 2010; Revised final: July 2010; Accepted: July, 2010

*Author to whom all correspondence should be addressed: e-mail: khodabakhshi@hlth.mui.ac.ir; Phone: +98-913-383-2717; Fax: +98-381-225-3661