ENHANCEMENT OF SEPARATION PERFORMANCES OF A NEW AZOIC DERIVATIVE FROM INDUSTRIAL WATER AND THE POSSIBILITY TO RECOVER ITS COMPLEX AS NANOMATERIAL

Doina Sibiescu1, Mihaela Dana Tutulea1, Igor Creteşcu2*, Mihaela Vizitiu1, Daniela Zavastin3, Ioan Rosca1

1"Gheorghe Asachi” Technical University of Iaşi, Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, 71 Mangeron Blvd., 700050 Iaşi, Romania
2“Gheorghe Asachi” Technical University of Iaşi, Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 71 Mangeron Blvd., 700050 Iaşi, Romania
3Gr.T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania

Abstract

In order to obtain new complexes of Fe(III) with multiple uses, their characteristics, important applications and also the obtaining conditions are studied. The obtaining conditions consist in mixing solutions of the same concentrations of ligand 2 amino-6-methoxy-benzothiazole sulphonic acid→1-naphtol-4-sulphonic acid with FeCl₃. The solutions are mixed in molar ratios of 1:1, 2:1 and 3:1 (ligand to central metallic atom). For determining the molar ratio ligand:central metallic atom, the methods applied were: pH-metry, conductometry, UV-VIS spectrophotometry. Also, the stability constants for new obtained compounds were determined using Molar Ratio method (J.H.Yoe and A.L.Jones), Continuous Variation method (Job) and Harvey-Manning method. The stability of the new obtained compounds is studied by varying the pH of its solution. The values are $K_1 = 2.56 \times 10^6$ L/mol for FeL₁; $K_2 = 19.76 \times 10^{13}$ L/mol for FeL₂ and $K_3 = 30.03 \times 10^{32}$ L/mol for FeL₃. The higher value for stability is assigned to the compound with molar ratio 3:1 (ligand: metal) in the 1.5÷6.5 pH range. The maxim value for the absorbance was measured at $\lambda_{\text{max}} = 601$ nm for FeL₁, $\lambda_{\text{max}} = 601$ nm for FeL₂ and respective $\lambda_{\text{max}} = 600$ nm for FeL₃. The studied complexes are very stable in the above-mentioned pH range and could be used for spectrophotometric determination of Fe(III) in visible domain. Another practical importance is represented by wastewater treatments by membranal separation. Thus, the separation process is improved by increasing the volume of these complexes in comparison with both ligand and Fe(III) and further the iron recovery by calcinations was accomplished.

Key words: 2 amino - 6 methoxy - benzothiazole sodium sulphonate→1-naphtol-4- sodium sulphonic acid as ligand, Fe(III) complex compounds, Fe₂O₃, purifying method through membrane, UV-VIS spectrometry

* Author to whom all correspondence should be addressed: email: icre@ch.tuiasi.ro