

"Gheorghe Asachi" Technical University of Iasi, Romania

CO-DIGESTION OF *Spirulina* sp. WITH LIGNOCELLULOSIC WASTE IN BATCH-SCALE BIOREACTORS FOR SUSTAINABLE BIOREFINERY DEVELOPMENT

Nishu Sharma^{1*}, Manpreet Kaur², Urmila Gupta Phutela³, Surekha Bhatia⁴

¹*Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India*

²*Department of Biochemistry Punjab Agricultural University, Ludhiana-141004, Punjab, India*

³*Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana-141004, Punjab, India*

⁴*Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana-141004, Punjab, India*

Abstract

Spirulina, an ancient cyanobacterium, is emerging as a potent candidate for anaerobic co-digestion processes, attributed to its resilience, rapid proliferation, cost-effectiveness, and environmental sustainability. This study meticulously optimized key cultivation parameters: pH (7.5–11.5), temperature (20–40 °C), light intensity (4000–8000 lux), incubation period (20–40 days), and inoculum concentration (1–10%), for the heterotrophic growth of *Spirulina* sp. NCIM 5143. The primary objective was to maximize biomass yield to facilitate efficient biofuel production and assess its potential for co-digestion with rice straw in advanced biogasification. Optimization led to significant enhancements in biomass yield and biochemical profile, notably increasing total chlorophyll, carbohydrate, protein, and lipid content, thereby highlighting *Spirulina* sp. NCIM 5143's viability as a superior feedstock for bioenergy applications. Optimal conditions, including a pH of 11.671, a temperature of 26.0391 °C, a luminescence of 4000.02 Lux, an incubation time of 39.372 days, and an inoculum size of 10.00% were obtained. Kinetic evaluation of biogas productivity using the modified Gompertz equation revealed significant insights. Notably, in mono-digestion scenarios, digester C demonstrated superior biogas yields, production rates, and shorter lag phases across different seasons. Conversely, co-digestion analysis highlighted digester E's dominance in kinetic parameters, indicating enhanced biogas productivity. Here, the maximum biogas generation potency (P) of 148.45 mL/g VS, with the highest rate of biogas generation (R_m) of 4.48 mL/g/d, and the shortest lag phase (λ) of 2.66 days was obtained. These findings highlight the significant potential of *Spirulina* as a pivotal contributor to efficient biofuel synthesis, aligning seamlessly with the broader goals of sustainable biorefinery development. The results advocate for intensified research and application in renewable energy production, positioning *Spirulina* as a key resource in advancing the transition towards sustainable energy systems.

Key words: biogasification, co-digestion, microalgae, modified gompertz equation, optimization

Received: May, 2024; Revised final: January 2025; Accepted: February, 2022; Published in final edited form: December, 2025

* Author to whom all correspondence should be addressed: e-mail: nishusharma028@gmail.com; Phone: 78374-38921