Environmental Engineering and Management Journal

April 2022, Vol. 21, No. 4, 589-601 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

COMPARATIVE INVESTIGATION OF Fe₃O₄, Fe₃O₄@HA AND Fe₃O₄@AC NANOPARTICLES ON DYES ADSORPTION

Gul Kaykioglu^{1*}, Aylin Yildiz², Derman Vatansever Bayramol³, Ibrahim Savas Dalmis⁴, Iskender Tamer Miral²

¹Tekirdag Namik Kemal University, Faculty of Corlu Engineering, Department of Environmental Engineering, 59860 Corlu, Tekirdag, Turkey ²Tekirdag Namik Kemal University, Faculty of Corlu Engineering, Department of Textile Engineering, 59860 Corlu, Tekirdag, Turkey ³Alanya Alaaddin Keykubat University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Alanya, Turkey ⁴Tekirdag Namik Kemal University, Faculty of Corlu Engineering, Department of Mechanical Engineering, 59860 Corlu, Tekirdag, Turkey

Abstract

In this study, the removal of Methylene Blue (MB) and Methyl Orange (MO) dyestuffs from aqueous solutions via adsorption by using magnetic nanoparticles of Fe₃O₄, Fe₃O₄@HA and Fe₃O₄@AC synthesized under laboratory conditions was investigated. The synthesized magnetic nanoparticles were characterized by SEM, EDX, XRD, BET surface area, FTIR, average pore diameter and particle size distribution analysis. When Fe₃O₄@HA and Fe₃O₄@AC were used as adsorbents, the optimum pH values for MB were determined as pH 11, pH 9 and pH 7, respectively, and pH 6, pH 4 and pH 4 for MO, respectively. At the determined optimum pH values, Fe₃O₄@HA and Fe₃O₄@AC were determined to be 4.2 mg/g, 4.8 mg/g and 8 mg/g for MB at an initial dye concentration of 10 mg/L, while Fe₃O₄@HA and Fe₃O₄@AC were determined to be 3 mg/g, 1.6 mg/g and 4.5 mg/g for MO, respectively. It was found to be compatible with the Freundlich isotherm and pseudo second-order model of all adsorption experiments. This study showed that Fe₃O₄@HA, synthesized by binding HA to Fe₃O₄, and Fe₃O₄@AC, synthesized, and carbonized by pyrolysis, magnetic nanoparticles can be used as a good alternative adsorbent for removing hazardous dyes from wastewater due to their good cleaning efficiency as well as easy synthesis and regeneration.

Key words: adsorption, color removal, desorption, magnetic nanoparticle

Received: April, 2021; Revised final: January, 2022; Accepted: January, 2022; Published in final edited form: April, 2022

^{*} Author to whom all correspondence should be addressed: e-mail: gkaykioglu@nku.edu.tr; Phone: +90 282 2502369; Fax: +90 282 2509924