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Abstract 
 
The research on the carbon emission of transportation sector has always been concerned. The purpose of this paper is to establish a 
model to predict whether China's transportation sector can meet the emission reduction commitments under the Paris agreement. 
We have collected data of carbon dioxide emissions and Gross Domestic Product (GDP) of China's transportation sector for 18 
years from 2000 to 2017. By comparing the accuracy of GM(1,1), fractional order GM(1,1), combination model of GM(1,1) and 
Markov model and the combination model of fractional order GM(1,1) and Markov model, the results showed that the combination 
model of fractional order GM(1,1) and Markov model had the highest prediction accuracy. Afterwards, we got that the carbon 
emission intensity of transportation sector from China in 2030 will be 63.70% lower than that in 2005. Under the current emission 
reduction measures and intensity, China's transportation sector will be able to meet the minimum emission reduction targets 
promised, but it will be difficult to achieve the maximum emission reduction targets by 2030. In the end, we put forward some 
policy suggestions to the relevant departments to reduce the carbon emission intensity of transportation sector.  
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1. Introduction 
 

Since the last century, global warming has 
become a problem that human can’t ignore with the 
widespread use of fossil energy (Li et al., 2020a; Zhou 
et al., 2019). As we all know, global warming has a 
great impact on the ecological environment and 
threatens the survival of human beings (Ding et al., 
2017; Fang et al., 2018; Miao, 2017; Sun et al., 2017; 
Wang and Ye, 2017). The Intergovernmental Panel on 
Climate Change (IPCC) report said that CO2 
emissions was an important reason for the global 
warming, and that human activities accounted for a 
large part of CO2 emissions. As one of the main 
reasons of global warming, the prediction of carbon 
emissions attracted a lot of attention (Ding et al., 2017; 
Sun et al., 2017; Şahin, 2019; Xu et al., 2016). In order 
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to cut down greenhouse gas emissions and slow down 
global warming, the United Nations adopted the Paris 
agreement in December 2015. Many countries had set 
objectives to slow greenhouse effect (Qiao et al., 
2020). 

With the rapid economic development, China 
has become the world's largest energy consumer and 
carbon emitter (Ding et al., 2017). At the same time, 
China's rapid urbanization has contributed to the 
increase in carbon emissions (Li et al., 2020b). China 
urgently needs to change its traditional development 
model to a healthier and more sustainable one (Zhang 
and Wei, 2015). Since the 13th five-year plan, China 
has been vigorously advocating low-carbon 
development (Xu et al., 2019). 

Transportation is a pivotal economic sector that 
supports social and economic development (Li et al., 
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2020c). It promotes the effective distribution of 
material and resources and increases mobility of 
people. However, the transportation sector is an 
important and increasing contributor to greenhouse 
gas emissions and its proportion of CO2 emissions is 
growing in all areas of the world (Cai et al., 2012; Liu 
et al., 2016; Saboori et al., 2014; Xu and Lin, 2015). 
The global transportation sector is the second largest 
sector of greenhouse gas (GHG) emissions, second 
only to the power generation sector. It accounts for 
24% of the total global direct CO2 emissions from fuel 
combustion (IEA, 2020a). In practice, the realization 
of the national overall emission reduction target is 
actually the realization of the emission reduction 
target of each source within each industry. In 2020, the 
State Council of China issued a white paper titled 
"Sustainable Development of China's Transport", 
proposing that the transport industry will 
comprehensively promote energy conservation, 
emission reduction and low-carbon development. As 
one of the main sources of carbon dioxide emission, 
the study on the carbon emission of transportation 
sector (TCE) has always been concerned (Cai et al., 
2012; Tian et al., 2014; Wang et al., 2017; Zhang and 
Wei, 2015). The carbon emissions of China's 
transportation industry increased from 260 mt (million 
tons) in 2000 to 889 mt in 2017, an increase of 
241.92% compared with 2000. Therefore, it is urgent 
for China's transportation industry to reduce 
emissions. By accurately predicting CO2 emissions, 
scholars can provide theoretical grounding for policy 
makers and improve the management level of carbon 
emissions (Qiao et al., 2020). 

A large number of scholars have predicted 
future carbon emissions through a variety of 
prediction models. However, the projections of future 
CO2 emissions from these models are based on a large 
amount of data. In case of less data or smaller samples, 
the following scholars used the grey model (GM) to 
predict the future carbon emissions, most of which are 
based on one order single variable grey model 
(GM(1,1)) and one order multiple variable grey model 
(GM(1,N)). Şahin (2019) used metabolic GM(1,1), 
nonlinear metabolic GM(1,1), optimized metabolic 
GM(1,1), and optimized nonlinear metabolic GM(1,1) 
to estimate Turkey's GHG emissions. But his research 
could not be used for long-term predicting, nor did it 
take into account changes in population and GDP. 
Through the transformation model of GM(1,N), non-
linear GM(1,N) and the non-linear GM(1,N) of 
transformed form (TNGM(1,N)), Wang and Ye 
(2017) calculated the optimal value of the parameters 
that could reflect the nonlinear effect through the 
optimization algorithm. After comparison, he found 
that the TNGM(1,2) model had the highest prediction 
accuracy. Xu et al. (2019) combined adaptive 
GM(1,1) with buffer rolling method to predict future 
greenhouse gas emissions. Compared with traditional 
models, this model improved the adaptability of data 
characteristics and prediction accuracy. Huang et al. 
(2019) predicted the CO2 emissions of China through 
a combination of grey relational analysis, long short-

term memory method and principal component 
analysis. By using the combined model of Verhulst 
model, GM(1,1) and system cloud GM(1,1), Zhang et 
al. (2015) predicted the TCE in Shandong. The results 
showed that the combined grey model was more 
accurate than the single prediction model. By using the 
same idea, Wu (2017) established the grey combined 
model of urban road traffic carbon emission, which 
verified this model. Song (2018) used GM(1,1), partial 
least squares regression model, grey Markov model 
and GM(1,N) model to predict the CO2 emissions of 
traffic. The results showed that grey Markov model 
had the highest prediction accuracy compared with 
other three models. 

At present, some scholars have studied the 
fractional order grey prediction model in different 
fields. Fang et al. (2013) used fractional order 
accumulation grey system model (FGM(1,1)) to 
predict the maintenance cost of small sample weapon 
system. The empirical results showed that FGM(1,1) 
could predict the memory process. Wu et al. (2013) 
proposed a new fractional order accumulation grey 
system model. In the in-sample model, when the 
accumulation order becomes small, it can better reflect 
the priority of new information. However, when the 
accumulation order number is 0, the grey system 
model cannot handle the system with memory. The 
empirical results showed that the new grey model had 
a very significant predictive performance. Wu et al. 
(2018) used the fractional accumulation GM(1,1) 
model (FGM(1,1)) to predict the annual average 
concentrations of PM2.5, PM10, SO2, NO2, 8-h O3, and 
24-h O3 in the Beijing-Tianjin-Hebei region from 
2017 to 2020. Wu and Zhao (2019) used fractional 
order accumulation GM(1,1) model to forecast the 
number of light pollution days and the annual average 
concentration of PM2.5 in the Beijing-Tianjin-Hebei 
region in 2020. Jiang et al. (2020) proposed fractional 
order accumulation nonlinear grey multivariable 
model (NFGM(1,N)). In terms of prediction 
performance, the prediction accuracy of NFGM(1,N) 
model is better than ARMA model, linear regression 
model, GM(1,1) model, GM(1,N) model and 
FGM(1,N) model. Şahin (2020) studied the prediction 
accuracy of fractional nonlinear grey Bernoulli model 
(FANGBM(1,1)) and its simplified forms, and used 
FANGBM(1,1) with relatively high prediction 
accuracy to predict the total installed capacity and 
power generation of renewable energy and 
hydroelectric energy in Turkey from 2019 to 2030. Xu 
et al. (2020) selected three indexes of GDP, PCDIIP-
rh and total population to study the influence of 
sample length on the prediction validity of FGM(1,1) 
model. The results showed that the prediction of 4-6 
samples is the most suitable. Şahin (2021) proposed a 
new optimized fractional nonlinear grey Bernoulli 
model, referred to as OFANGBM(1,1).The model 
used genetic algorithm to optimize the background 
value λ, the power index value γ and the fractional 
order value r. 

In recent years, some scholars have studied the 
prediction of carbon emission intensity through 
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various research methods. Wang et al. (2014) 
established a hybrid nonlinear grey prediction and 
quota allocation model (HNGP-QAM) to support the 
optimization planning of China's provincial and 
departmental carbon intensity reduction in 2020. At 
such a dual level, HNGP-QAM is not only helpful to 
predict carbon intensity and its fluctuation in the 
relevant period, but also helpful to determine China's 
2020 carbon intensity reduction target and 
corresponding quotas, so as to minimize the total cost 
of emission reduction. Ren and Guo (2016) used 
GM(1,1) model and linear regression model to 
forecast the total energy consumption in 2020 and 
2030. Then, the carbon emission intensity is calculated 
to analyze the realization of China's carbon emission 
reduction target. The results showed that some of 
China's commitments to carbon intensity were not 
actually binding, and policy intervention is needed to 
achieve China's 2030 carbon emission peak and 
carbon intensity reduction targets. Dong et al. (2018) 
used structural decomposition analysis (SDA) and 
quantile regression analysis to study the driving 
factors of carbon emission intensity change in China. 
Based on input-output SDA, the carbon emission 
intensity of China from 1992 to 2012 was decomposed 
from the perspectives of economic aggregate and 
economic sector. The results showed that the 
industrial sector was the key sector of energy 
conservation and emission reduction. 

In all, there were many scholars who predicted 
the future carbon emissions, but there were few 
researches on the carbon emission of transportation 
sector (TCE), especially those using the combined 
model based on the grey prediction system to predict 
the TCE. The innovation of this paper lies in the 
introduction of fractional order model and Markov 
model on the basis of GM(1,1). By comparing the 
prediction accuracy before and after the model 
improvement, we used the better optimized prediction 
model to predict the carbon emission intensity of 
transportation sector (TCEI). The paper aims to 
provide a theoretical basis for policymakers' decisions 
on whether China's transportation sector will be able 
to meet its emission reduction target, which calls for a 
60% to 65% reduction in carbon emission intensity 
from 2005 levels by 2030. It also provides theoretical 
support for the transportation department to evaluate 
the implementation effect of the current emission 
reduction work and to formulate more effective 
energy-saving and emission reduction strategies in the 
future. 

The layout of the paper is organized as follows. 
In Section 2, we introduce GM(1,1) (Model 1), 
fractional order GM(1,1) (Model 2), the combination 
model of GM(1,1) and Markov model (Model 3) and 
the combination model of fractional order GM(1,1) 
and Markov model (Model 4). In Section 3, we explain 
the data sources of this study. In Section 4, we 
calculate the prediction accuracy of Model 1-4. We 
summarize and compare the prediction accuracy of 
several models. Then, we get the prediction model 
with the highest accuracy and use this model to predict 

the future TCEI in China. Based on these projections, 
we calculate the future TCEI targets for China. At the 
same time we put forward some policy suggestions. In 
Section 5, we summarize the results of model 
improvement, the innovation and limitations of the 
paper research, and then introduce the direction of 
further research. 
 
2. Methodology 
 

As mentioned above, many scholars have 
studied the carbon emissions of various industries 
through the grey model. GM(1,1) is an exponential 
growth model, which is mainly aimed at the univariate 
system and seeks for the change rule of the system 
through the randomness of the weakening sequence 
generated by accumulation, so as to establish a 
prediction model about time. FGM(1,1) can 
effectively improve the prediction accuracy of 
GM(1,1) by extending the model order from positive 
integers to positive real numbers. The prediction 
accuracy of FGM(1,1) can be improved by selecting 
the appropriate order of accumulation. Markov model 
is to predict the state of the future system through the 
current state and state transition rule. This model can 
be used to solve the problem with large random 
fluctuation, so it can be used to make up for the 
deficiency of grey model (Li et al., 2020d). 

 
2.1. Grey model 
 

The modeling idea of the grey model is to 
directly transform the time series into continuous 
differential equations, so as to establish the 
development dynamic change model of the abstract 
system. This kind of prediction can better observe the 
internal law of the system and predict the future 
development trend of the system. The commonly grey 
model is GM(1,1) (Wang et al., 2014) and the 
modeling steps can generally be summarized as Eqs. 
(1)-(6). 

Assuming that the sequence 
(0) (0) (0) (0)(x (1), x (2), , x ( ))X n=   

among them, (0)x (k) 0 k=1,2 n≥ ， ， ，  . ( )1X   is 
the 1-AGO sequence of (0)X , then it is valid Eq. (1): 
 

(1) (1) (1) (1)(x (1), x (2), , x ( ))X n=   (1) 
 

where 
k

(1) (0)

i=1
x (k)= x (i) k=1,2 n∑ ， ， ， . 

 
The whitening differential equation is shown as 

Eq. (2): 
 

(1)
(1)ax =b

t
dx
d

+  (2) 

 
The parameter vector [ ]ˆ , Ta a b=  in Eq. (2) can 

be estimated by the least square method. It is shown as 
Eqs. (3-4): 
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T 1â= B ) TB B Y−（  (3) 

(1) (1)

(0)

(1) (1)(0)

(0)

(1) (1)

1 x (1) x (2) 1
2x (2)
1 x (2) x (3) 1x (3)
2

x (n) 1 x (n 1) x (n) 1
2

Y B

  − +  
   
    − +    = =
   
   
   

 − − +   


 

，

 (4) 

 
Then the time response formula is Eq. (5): 
 

( )-a k-1(1) (0) b bx̂ (k)= x (1) e k=1,2 n
a a

 − +  
， ， ，  (5) 

 
The final reduction formula of GM(1,1) model 

is Eq. (6): 
 

( ) ( )-a k-1(0) (1) (1) a (0) bx̂ (k)=x (k) x (k-1)= e x (1) e k=1 2 n
a

 − −  
1- ， ，， ，

 (6) 
 
2.2. Fractional order grey model 
 

The GM(1,1) is an exponential growth model, 
which is mainly aimed at the univariate system. It 
looks for the change law of the system by generating 
the randomness of the weakening sequence by 
accumulation and establishes the prediction model 
about time on this basis. The fractional order contains 
an "in between" idea. The purpose of this paper is to 
select the appropriate accumulation order, which can 
improve the modeling accuracy of grey model. The 
structure of the FGM(1,1) is identical to that of the 
GM(1,1). The essential difference between them is 
that the GM(1,1) model uses the first-order 
accumulation of the original sequence ( )0X  to 
generate the sequence ( )1X  as the modeling sequence, 
while the FGM(1,1) uses the accumulation of r-order 
of the original sequence ( )0X  to generate the sequence 
as the modeling sequence, which presents a certain 
rule, and uses curve fitting to establish the 
mathematical model. 

Assuming that the original non-negative series 
sequence is (0) (0) (0) (0)(x (1), x (2), , x ( ))X n=  ，add r-
order to the original sequence (0)X  to get the 
sequence: (r) (r) (r) (r)(x (1), x (2), , x ( ))X n=  , which can 
be gotten by Eq. (7) (Li et al., 2020d): 

 
( )

( ) ( )
k

(r) (0)

i=1
x (k)= x ( ), k=1,2 n .

1
r k i

i
k i r
Γ + −

Γ − + Γ∑ ， ，  (7) 

 
Assuming that (0) (k)x  and (r)x (k) , we can 

obtain Eq. (8), 
 

(0) (r)x (k) ax (k)=b+ . (8) 
 

Let's say that (r)X   is fractional accumulation 
generates (0)X  sequence. 

 ( ) ( ) ( ) ( )( (2), z (3), , z ( ))r r r rZ z n=   

among them, ( )
( ) ( )(k) (k-1) , k=2,3 n

2

r r
r x xz +
= ， ，  , then, 

we can get Eq. (9): 
 

( 1) (r)x (k) az (k)=br− +  (9) 
 

This model is the first-order differential 
equation of (r)X , and the sum of the r-order of (0)X  is 
used to generate the mean value of the sequence (r)X  
and the ( )rZ  after mean value processing is used as the 
modeling data. (r)X  is reduced to the predicted value 
of the original data (0)X  after r-order reduction, and 
this model is called FGM(1,1). 

( r) ( r) ( r) ( r)(x (1), x (2), , x ( ))X n− − − −=   is the r-order 

degenerate generation operator of (0)X , which can be 
calculated by Eq. (10): 

 

( ) ( )
( ) ( )

k-1
( ) (0)

i=0

1
x (k)= 1 x ( ), k=1,2 n.

1 1
ir r

k i
r i i

− Γ +
− −

Γ − + Γ +∑ ， ，

 (10) 
 

The parameter vector [ ]ˆ , Ta a b=  in Eq. (9) can 
be estimated by the least square method. It is shown as 
Eq. (11): 

 
T 1â= B ) TB B Y−（  (11) 

 

Among, 

( ) ( )
( ) ( )

( ) ( )

( 1)

( 1)

( 1)

2 1x (2)
3 1x (3)

x (n) 1

rr

rr

r r

z

z
Y B

z n

−

−

−

 − 
   −  = =   
  
 −   

 
，

 and

( 1) ( ) ( )x (k) x (k) x (k-1)r r r− = − , 2,3, , .k n=   
Then, we have Eq. (12), 

 
( )

( )ax =b
t

r
rdx

d
+ , (12) 

 
which is the whitening differential equation of 

( 1) (r)x (k) az (k)=br− +  in FGM(1,1). 
The time response expression of 

( 1) (r)x (k) az (k)=br− +  in FGM(1,1) is Eq. (13): 
 

( )-a k-1( ) (0) b bx̂ (k)= x (1) e k=2,3 n.
a a

r  − +  
， ， ，  (13) 

 
The reduction value of ( )x̂ (k)r  is Eq. (14): 
 

( )( )( )
( ) ( ) ( )

( ) ( )
k-1

(0) ( )

i=0

(0) (0)

1
ˆ ˆ ˆx (k)= = 1 x ( ), k=2 n

1 1

x̂ (1) x (1)

r ir rr
x k k i

r i i
− Γ +

− −
Γ − + Γ +

=

∑ ，3， ，  

 (14) 
 

The FGM(1,1) obtain the r-order prediction 
data through the time response function, then reduce it 
to the simulation data through the r-order reduction, 
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and finally substitute the optimal r-order into the 
model. The optimal order of FGM(1,1) is obtained by 
particle swarm optimization algorithm (PSO). PSO 
algorithm is a global optimization algorithm proposed 
by Kennedy Eberiiart in 1995. In order to improve the 
global convergence, the PSO algorithm of adaptive 
variation of population fitness variance is adopted in 
this paper to obtain the minimum mean absolute 
percentage error in the FGM(1,1), at which time the 
order of the prediction model is the optimal order. 

The objective function is given by Eq. (15): 
 

( )
(0) (0)

(0)
2

ˆx (k) x (k)1min , .
1 x (k)

n

k
f r r R

n
+

=

−
= ∈

− ∑  (15) 

 
The operating parameters of PSO are set as 

follows: 
(1) Learning factor c1=2, c2=2; 
(2) Dynamic inertia weight factor w=0.8; 
(3) The maximum number of iterations is 300; 
(4) Particles in the range [ ]0,2r∈ ; 
(5) The number of individuals in the group is; 
(6) Accuracy is set to 0.000001. 
 

2.3. Markov model 
 

Andrei Markov proposed the Markov chain in 
1906. At present, Markov model is widely used in 
engineering technology, natural science and public 
utilities (Ren and Gu, 2016). 
 
2.3.1. State interval division 

Based on the value range s of the relative ratio 
q about the actual value and the predicted value 
calculated above, markov state interval is divided. 
Divide the equal length of the value range of p into n 
intervals to obtain n+1 state boundary value 

( )1 2 1, , , ns s s s +=  , where n is the number of state 
intervals. 

Then the state interval Ei is divided as Eq. (16): 
 

( ) ( )

( ) ( )

0 0
1 1 2

0 0
1

ˆ ˆ,

ˆ ˆ,n n n

E s x s x

E s x s x+

  =  

  =  

  (16) 

 
2.3.2. Construct k-step state transition probability 
matrix 

Let Mij represent the original sample number of 
state Ei transferred to state Ej after k steps. Mi is the 
sample number of state Ei, and Pij(k) is the probability 
of data sequence which transferred from state Ei to 
state Ej through k steps. Among them, Pij(k) is 
calculated by Eq. (17). 

 

( ) ( ) ( )ij
ij

i

= i=1,2
M k

P k
M

， ，n  (17) 

Let k-step state transition probability matrix be 
P(k), which is calculated by Eq. (18):  

 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1n

21 22 2n

n1 n2 nn

k k k
k k k

=

k k k

P P P
P P P

P k

P P P

 
 
 
 
 
  





   



 (18) 

 
2.3.3. Calculate the grey Markov prediction value 

0x̂′  
Using the state k-step transition probability 

matrix P(k), it can be calculated that the corresponding 
probability of transferring ( )0x̂′  to state interval 

( )1 2, , ,i nE E E E=   is ( )1 2, , ,i nP P P P=  , and the 
state interval Emax corresponding to Pmax is taken as the 
last state interval of ( )0x̂′ . 

The grey Markov predictive value 0
1ˆtx +′  can be 

obtained by taking the median of the state interval. It 
is shown as Eq. (19): 

 

( ) ( ) ( )0
0 1 1
1

ˆ
ˆ =

2
i i t

t

s s x
x + +

+

+
′  (19) 

 
2.4. Model construction 

 
This paper combines FGM(1,1) and Markov 

model to obtain a new combination model, whose 
modeling ideas is shown in Fig. 1. Among them, PSO 
algorithm is solved by MATLAB software. 
 
2.5. Accuracy indicators 

 
It is necessary to evaluate the accuracy of the 

prediction results respectively. The evaluation 
indicators are calculated by residual ( )

0
te  and relative 

error ( )xq . Its calculation formula is given by Eq. (20): 
 

( ) ( ) ( )
( )
0

0 0 0
0ˆ= , t

t t x

e
e x x q

x
− =  (20) 

 

The mean absolute percentage error (MAPE) 
can be used to compare the prediction accuracy of 
various models (Şahin, 2019). The calculation formula 
of MAPE is according to Eq. (21): 

 

( )
1= 100

n

x
x

q
MAPE

n
= ×
∑

 (21) 

 
The carbon emission intensity is calculated by 

Eq. (22) (Chen, 2011): 
 

= j
j

j

E
Y

G
 (22) 

 

where: Yj is the TCEI in year j, Ej is the TCE in year 
j, and Gj is the GDP of transportation sector in year j. 
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Fig. 1. The framework of FGM(1,1)-Markov model 
 
3. Data sources 
 

The data are from the International Energy 
Agency (IEA, 2020b) and China statistical yearbook 
(National Bureau of Statistics, 2020). This paper 
collected data on carbon dioxide emissions and GDP 
of China's transportation sector from 2000 to 2017. 
The specific data is shown in Table 1. 

Table 1. The original data about CO2 emissions and GDP 
in the transportation sector 

year TCE (mt） GDP (100 million yuan) 
2000 260 6162 
2001 264 6871 
2002 284 7494 
2003 321 7915 
2004 376 9307 
2005 403 10669 
2006 440 12186 
2007 474 14605 
2008 512 16368 
2009 524 16522 
2010 575 18784 
2011 628 21842 
2012 692 23763 
2013 748 26043 
2014 777 28501 
2015 834 30488 
2016 851 33059 
2017 889 37173 

4. Empirical research 
 
4.1. Prediction accuracy analysis 
 

Through the calculation of Model 1-4, the 
calculated parameters of each model were obtained, 
and the simulation values and relative errors 
calculated by each model were obtained (Figs. 2-9). 
Table 2 shows the relevant parameters of the 
calculation process of each model. 

 
Table 2. Relevant parameters in the calculation process  

of each model 
 

 model a b r 

TCE Model 1,3 -0.0713 273.3316 1 
Model 2,4 -0.0242 64.2013 0.2591 

GDP Model 1,3 -0.1010 6605.6279 1 
Model 2,4 -0.0761 874.4893 0.1544 

 
As can be seen from Figs. 2-9, for TCE and 

GDP in the transportation sector, the fitting effect of 
Model 2 and Model 3 is obviously better than that of 
Model 1, and the relative error is smaller. Moreover, 
the prediction accuracy of Model 4 is further improved 
on the basis of Model 2 and Model 3. 

In the above diagram, Fig. 5 and Fig. 9 are the 
fitting diagram of Model 4. In Fig. 5, the relative errors 
of 2005, 2009 and 2015 are larger than those of other 
years. In Fig. 9, the relative errors of 2008, 2009 and 
2011 are also larger than those of other years.  
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Fig. 2. Model 1: TCE (mt) 
 

 
 

Fig. 3. Model 2: TCE (mt) 
 

 
 

Fig. 4. Model 3: TCE (mt) 
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Fig. 5. Model 4: TCE (mt) 
 

 
 

Fig. 6. Model 1: GDP in the transportation sector (100 million yuan) 
 

 
 

Fig. 7. Model 2: GDP in the transportation sector (100 million yuan) 
 

 1576 



 
A novel of fractional order predictive model on carbon emission intensity in China's transportation sector 

 

 
 

Fig. 8. Model 3: GDP in the transportation sector (100 million yuan) 
 

 
 

Fig. 9. Model 4: GDP in the transportation sector (100 million yuan) 
 

After observation, it is found that the transition 
probability of a certain state in these samples is not 
much different or even equal to the maximum 
transition probability. Therefore, the reason for the 
relative errors of these samples are large is that the 
Markov model only uses the state interval with the 
largest transition probability to correct the fitted value, 
but the probability of other state intervals is not all 
zero. Therefore, the model does not make full use of 
the state transition probability information contained 
in the original data. This needs to be further improved. 
To facilitate the analysis, the prediction accuracy of 
the above models is summarized and compared 
according to Eqs. (20-21), as shown in Table 3.  
 

Table 3. The comparison table of each model MAPE 
 

model Model 
1 

Model 
2 

Model 
3 

Model 
4 

MAPE TCE 4.1868 2.0007 2.6127 1.3261 
GDP 5.6191 2.8938 2.1175 1.9090 

After comparison, it can be found that the 
MAPE of the Model 4 is lower than those of Model 1-
3. In consequence, the use of Model 4 will further 
reduce the MAPE and further improve the prediction 
accuracy.  
 
4.2. Prediction 
 

We use Model 4 to predict China's TCE and 
GDP of the transport sector from 2018 to 2030 (as 
shown in Table 4), and thus calculate the TCEI. The 
TCEI for 2005 and 2030 are shown in Table 5. 

As a result, the TCEI of China was projected to 
decrease by 63.70% in 2030 compared to 2005, but 
one of China's targets under the Paris agreement 
signed in 2015 is to reduce carbon emission intensity 
by 60-65% by 2030 compared with 2005 levels. In 
consequence, under the current emissions reduction 
measures and intensity, China's transport sector will 
be able to meet the minimum emission reduction 
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targets promised, but it will be difficult to achieve the 
maximum emission reduction targets by 2030. 

 
Table 4. Forecast result: China's TCE and GDP in  

transportation sector 
 

year TCE GDP in the transportation sector 
2018 942 40769 
2019 965 44485 
2020 1011 46926 
2021 1111 51108 
2022 1161 55617 
2023 1184 64516 
2024 1235 67919 
2025 1288 73766 
2026 1308 80073 
2027 1362 84072 
2028 1486 91174 
2029 1545 98836 
2030 1566 114246 

 
Table 5. TCEI (Ton /10,000 RMB) 

 
2005 2030 Decreased 

3.7774 1.3710 63.70% 
 
TCEI is calculated through TCE and GDP of 

the transport sector, so the development trend of TCEI 
can be adjusted by controlling the future TCE and 
GDP of the transport sector. Moreover, since 
economic development is related to the national 
economy and people's livelihood, TCE is the main 
target of government regulation. In order to achieve 
the maximum reduction goal of reducing China's 
carbon emission intensity by 65% from 2005 levels by 
2030, we calculated that China's transportation sector 
would have to reduce its carbon emission intensity by 
at least 2.18% annually from 2017 if GDP growth 
trend remains unchanged. In other words, the TCEI of 
China will have to drop by at least 0.0823 tons/10,000 
yuan per year from 2017, so we have the development 
goals that TCEI must meet in the future. Combined 
with the emission reduction target that TCEI must 
achieve in the future and the future development of 
GDP of the transportation industry predicted above, 
the development trend of China's TCE after 2017 can 
be calculated, as shown in Table 6. 

 
Table 6. Forecasting results of China’s TCE by Model 4 

 
year TCE(mt） 
2018 941 
2019 991 
2020 1006 
2021 1054 
2022 1101 
2023 1224 
2024 1233 
2025 1279 
2026 1322 
2027 1319 
2028 1355 
2029 1388 
2030 1510 

If the development trend of China's TCE in 
Table 6 is met, China's transportation sector could 
achieve a 65% reduction in carbon emission intensity 
by 2030 compared with 2005. 
 
4.3 Discussion 
 

Through the comparison of prediction 
accuracy, it is found in this paper that the prediction 
accuracy of Model 4 is the highest among the four 
prediction models mentioned above. Based on Model 
4, the MAPE of TCE and the GDP of transportation 
sector are 1.3261% and 1.9090% respectively. In the 
field of carbon emissions, some scholars have studied 
the improvement of the prediction accuracy of many 
models. Among them, the adaptive grey model with 
buffered rolling mechanism (Xu et al., 2019), the 
general regression neural network based on the 
correlation analysis (Antanasijević et al., 2014), the 
optimized nonlinear metabolic grey model (Şahin, 
2019) and the improved Gaussian process regression 
based on modified PSO algorithm model (Fang et al., 
2018) calculated the MAPE as 2.81%, 3.60%, 5.19% 
and 8.00% respectively. The MAPE of Model 4 
constructed in this paper is lower than the above 
models, so Model 4 has better carbon emission 
prediction performance. 

In order to meet the maximum emission 
reduction targets, China needs to actively launch more 
aggressive emission reduction policies and intensify 
emission reduction efforts. For the transportation 
sector, CO2 emissions can be reduced through the 
following measures: 

(1) Optimize energy structure and develop new 
energy vehicles 

With the development of traffic, the 
optimization of energy consumption structure is the 
key to reducing CO2 emissions. China should further 
highlight the application and study of energy 
technology and the implementation of emission 
reduction policy. Currently, most of the vehicles in 
China are still powered by fossil fuels. For example, 
the share of biofuels in China's transportation sector in 
transportation energy consumption increased from 
1,962,766 ktoe in 2000 to 2,821,408 ktoe in 2017, only 
increasing by 43.75% in 18 years (IEA, 2020a). To 
decrease energy consumption and TCE, authorities 
should vigorously develop clean energy vehicles that 
replace fossil fuels. And China should promote the 
research of new technology, accelerate vehicle 
upgrading and replace high energy consumption and 
pollution in time. Governments should increase 
investment in cleaner energy research and the 
construction of infrastructure. And China needs to 
complete its law and policy system of energy 
gradually to create a healthy environment for the 
development of low-carbon transportation. 

(2) Develop public transportation 
China should vigorously develop the public 

transportation systems of electric and hybrid energy, 
and decrease CO2 emissions from the widespread use 
of transportation. China's urbanization is characterized 

 1578 



 
A novel of fractional order predictive model on carbon emission intensity in China's transportation sector 

 
by rapid urban and rural migration for better jobs and 
the disorderly expansion of urban, as well as private 
car ownership growing at an average annual rate of 
more than 20 percent. It has led to a series of 
challenges for many Chinese cities, such as resource 
shortage, traffic congestion and increased carbon 
dioxide emissions. Public transport has the 
comparative advantages of large capacity, high 
efficiency, low energy consumption and low carbon 
emissions (Ministry of Transport of the People's 
Republic of China, 2016). In consequence, it is 
beneficial for China to develop a public transport 
system of electric and hybrid energy and decrease CO2 
emissions from the widespread use of transportation. 
In addition, China should further increase the 
investment in infrastructure, especially conventional 
public traffic and rail traffic, and promote public 
transportation and rail transportation gradually, which 
can effectively solve the traffic problem. 

(3) Improve the efficiency of energy and 
promote low-carbon technologies in the industrial 
chain 

Improving energy efficiency remains an 
effective way for China to reduce CO2 emissions. 
China needs to set up a long-term energy conservation 
mechanism and shut down the outdated production 
capacity in energy-intensive industries. In addition, 
China needs to optimize the industrial structure and 
enhance the technological level for the increase of 
energy efficiency, especially in the transportation 
sector. The total energy consumption of China's 
transportation sector increased from 99.16 million 
tons of standard coal in 2000 to 421.91 million tons of 
standard coal in 2017, an increase of 325.48 percent 
(National Bureau of Statistics, 2020). China should 
promote low-carbon technologies in the industrial 
chain to fully realize the potential of carbon emission 
efficiency. Technological advance has a positive 
impact on carbon emission efficiency and a strong 
industrial radiation effect. The government needs to 
increase the investment in technology, introduce 
advanced and mature technologies in the industrial 
chain, and enhance the promotion of low-carbon 
technologies, such as cultivating a carbon trading 
market. 

(4) Restrictions on private cars 
Economic development will inevitably bring 

pressure to the environment, but the final objective is 
to achieve the synchronous development of economy 
and low-carbon transportation. With the improvement 
of people's economic ability, the number of private 
cars has been on the rise as people's increasing 
purchasing power has changed their preference for 
travel. People prefer convenient but not 
environmentally friendly modes, such as private car. 
The number of private cars in China soared from 
6.2533 million in 2000 to 185.1511 million in 2017, 
an increase of 2,860.85 percent (National Bureau of 
Statistics, 2020). The government should take some 
measures to guide people to choose a low-carbon way 
to    travel.   For   private   cars,   on  the   premise   of  

convenience, China should implement policies to 
control private cars, introduce relevant license plate 
restrictions and purchase restrictions, so as to reduce 
CO2 emissions. Fuel taxes can guide consumer 
behavior, so further increases on fuel taxes and 
charges for vehicle emissions are other important 
economic tools to decrease fuel consumption and CO2 
emissions. 
 
5. Conclusions 
 

This paper aims to use a novel model to predict 
whether China's transportation sector can meet its 
emission reduction commitments under the Paris 
agreement. By comparing the accuracy of GM(1,1), 
FGM(1,1) and the GM(1,1)-Markov model, the results 
showed that FGM(1,1) and the GM(1,1)-Markov 
model were better than GM(1,1), which both 
improved the prediction accuracy. We combined the 
FGM(1,1) with the Markov model, and found that the 
MAPE were further reduced. In consequence, we 
chose the FGM(1,1)-Markov model to predict the 
future TCEI of China. 

We concluded that China's transportation 
sector will emit 1.3710 tons of carbon emission 
intensity in 2030, compared with 3.7774 tons in 2005. 
As a result, the TCEI of China will be 63.70% lower 
in 2030 than in 2005. Under the current emissions 
reduction measures and intensity, China's transport 
sector will be able to meet the minimum emission 
reduction targets promised, but it will be difficult to 
achieve the maximum emission reduction targets by 
2030. As time goes on, China must introduce effective 
measures to reduce carbon emission intensity as soon 
as possible. If TCEI of China drops by at least 0.0823 
tons/10,000 yuan per year from 2017, China's 
transportation sector will achieve a 65% reduction in 
carbon emission intensity by 2030 compared with 
2005. China needs to strengthen the management of 
TCE to meet the realization of its emission reduction 
commitment.  

The innovation of this paper lies in the 
combination of FGM(1,1) model and Markov model 
to establish a new combined model, so as to predict 
the CO2 of Chinese transport sector. But the research 
object of this paper is the carbon emission of Chinese 
transport sector, and the carbon emission contribution 
of different transport modes is not studied in detail. 
Therefore, this paper cannot provide more detailed 
policy suggestions to decision-makers to make their 
decisions more targeted. 

In consequence, in future research, we can 
further study the carbon emission contribution of 
different transportation modes to make our policy 
recommendations more targeted. In addition, we can 
optimize the Markov model based on the FGM(1,1)-
Markov model in the future, so as to further improve 
the accuracy of prediction model. 
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