Environmental Engineering and Management Journal

September 2021, Vol. 20, No. 9, 1435-1444 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

PHOSPHORUS SORPTION-DESORPTION IN SOIL AS INFLUENCED BY ORGANIC MATTER, CARBONATES AND Fe-AI OXIDES

Hoda Hosseini*, Majid Fekri, Mohammad Hady Farpoor, Majid Mahmoodabadi

Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Phosphorus (P) reactions in soil are influenced by its chemical components such as organic matter (OM), carbonates, and Fe-Al oxides. This study was aimed to compare the P sorption-desorption processes in two soils in the presence and absence of the aforementioned chemical components. In order to eliminate OM, carbonates, and Fe-Al oxides, the soils were treated with sodium hypochlorite (NaOCl), sodium acetate (NaOAC), and citrate-bicarbonate-dithionate (CBD), respectively. Then, the P sorption-desorption processes were carried out under batch conditions in comparison with the non-treated soils. Results indicated that removal of OM increased the maximum P sorption capacity (Q_{max}) of the soils by 42 and 69 mg kg⁻¹. While, removing of the carbonates decreased the Q_{max} values of the soils by 118 and 67 mg kg⁻¹. Furthermore, the removal of Fe-Al oxides resulted in Q_{max} reduction in the range of 34.3 and 19.2%. The phosphorous desorption sequence in the studied soils was as follows: Fe-Al oxides free > carbonates free > untreated > organic matter free. The standard P requirement (SPR) in the studied soils increased by 15.7 and 28% after OM removal and decreased by 33.3 and 17.03% and 47.9 and 22.6% after removal of carbonates and Fe-Al oxides, respectively. Overall, the results of the present study revealed that the P sorption capacity of the soils decreased in the presence of the OM and increased in the presence of Fe-Al oxides and carbonates. However, the effects of Fe-Al oxides were significantly higher.

Keywords: calcareous soils, isotherm, phosphorus, sodium hypochlorite

Received: April, 2020; Revised final: March, 2021; Accepted: March, 2021; Published in final edited form: September, 2021

^{*} Author to whom all correspondence should be addressed: e-mail: h.hosseini@agr.uk.ac.ir; Phone: +98(34) 33222042; Fax: +98(34) 33222043