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Abstract 
 
Green innovation is the key measure to improve environmental efficiency and enhance environmental protection, but it is difficult 
to effectively drive green innovation only relying on the market mechanism. Therefore, exploring how to motivate green innovation 
through environmental instruments is essential for the sustainable development. Applying a spatial econometric model to panel data 
of 285 prefecture-level cities in China, this study estimates the dynamic impacts of the command and control and market-based 
instruments on green innovation, taking into account regional and innovation type heterogeneity. The results of the spatial 
econometric analysis show that the command and control instrument inhibits green innovation in the current period. Moreover, 
while the market-based instrument has no significant effect on green innovation in the current period, it significantly induces green 
innovation in the lagging period, which supports the Porter hypothesis. The sub-sample regression results reveal that the market-
based instrument only induces green utility model which is less innovative both in the central and western regions. In addition, the 
market mechanism in the western regions should be improved. Finally, policy recommendations for the government are presented 
to improve China’s environmental instrument system to promote green innovation. This study fills the gap in the literature by 
comparing the effects of command and control and market-based instruments, especially in developing countries. 
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1. Introduction 
 

With the increasingly serious situation of 
resource exhaustion and pollution, environmental 
problems have become a major issue restricting 
sustainable economic development (Cai et al., 2017; 
Ramalingam et al., 2018). Entering the 13th Five-Year 
Plan period, China urgently needs to take a win-win 
path toward economic development and 
environmental protection. As an effective 
“transformation” innovation mode (Huisingh et al., 
2015), green innovation is an important cornerstone of 
the Europe 2020 development strategy, an important 
engine to build a beautiful China, and a basic means 
for enterprises to gain competitive advantages given 
resource and environmental constraints (Lin et al., 
2014: Tseng et al., 2013). In particular, the diffusion 
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process of green innovation is the key to sustainable 
development. However, due to the characteristics of 
dual positive externalities (Rennings, 2000), 
promoting green innovation by relying solely on the 
market mechanism is difficult. To achieve sustainable 
development, many countries have set environmental 
standards or strict environmental instrument to reduce 
pollutant emissions and protect the environment 
(Horbach, 2008; Hojnik and Ruzzier, 2016). Since the 
1970s, China has introduced a series of environmental 
instrument in different fields and links (Li and Lin, 
2017). Currently, China’s environmental instrument is 
evolving from a single command and control type to a 
multi-level environmental instrument system with 
command and control, market-based, and voluntary 
agreement-based instruments. With the economic 
growth slows down, innovation has become the engine 
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of further growth (Yang and Yang, 2015). Therefore, 
it is significant to clarify the different impacts of 
different types of environmental instruments on green 
innovation in China (Shen et al., 2019) and explore 
how to promote green innovation, especially green 
innovation which is more innovative effectively 
through different instruments. In this paper, the 
impacts of the command and control instrument (CCI) 
and market-based instruments (MBI) on green 
innovation are mainly focused on. 

Academically, the influence of environmental 
instruments on green innovation is a current research 
hotspot, with a large volume of research focused on 
the Porter hypothesis. From the static viewpoint, 
traditional economics held that environmental 
instruments will increase the “compliance cost” of 
enterprises and produce a “crowding-out effect” on 
enterprises’ innovation behavior. Some scholars 
supported the negative effect of environmental 
instruments on technological innovation (Chintrakarn, 
2008; Gollop and Robert, 1983; Greenstone et al., 
2012; Wagner, 2007). Based on a dynamic 
understanding of competitive advantage, Porter and 
Van der Linde (1995) put forward the theory of 
“innovation compensation” in the form of the “Porter 
hypothesis.” This hypothesis states that a properly 
designed environmental instrument can lead to 
innovation, compensate for the compliance cost of the 
environmental instrument, yield ecological benefits, 
and increase enterprise competitiveness. There are 
Porter hypothesis is divided into weak Porter 
hypothesis and strong Porter hypothesis. While the 
former indicates that environmental instruments can 
stimulate green innovation, the latter suggests that 
environmental instruments can not only stimulate 
green innovation, but also enhance the 
competitiveness of enterprises. Some scholars have 
revised Porter’s “innovation compensation” theory. 
Schmutzler (2001) and Mohr (2002) used the 
principal–agent theory, bounded rationality, and 
spillover utility to find that environmental instruments 
can induce innovation that completely offsets the cost 
of implementation in very few cases. These theoretical 
differences have led to many empirical studies on the 
impacts of environmental instrument on green 
innovation. Arduini and Cesaroni (2001) employed 
the data of chemical industry in United States and 
Europe from 1993 to 1997, and found that the 
environmental instrument directly induces green 
innovation. Arimura et al. (2005), Brunnermeier and 
Cohen (2003) and Kammerer (2009) used the data of 
seven OECD countries, the United States and 
Germany respectively, and all drew the conclusion 
that environment regulations drive green innovation. 
The research of Berman and Bui (2001), Frondel et al. 
(2007), Jaffe and Palmer (1997), Kneller and 
Manderson (2012), Johnstone et al. (2010), Nelson et 
al. (1993), Popp (2003), and Rubashkina et al. (2015) 
also supported the "weak Porter hypothesis". 

As deeper research, it has been found that there 
may not be simple linear relationship between 
environmental instrument and green innovation. 

Instead, more complex relationships such as a “U-
shaped” relationship should be taken into 
consideration (Jiang et al., 2013). Based on China’s 
provincial data, Ren et al. (2016) found an inverted 
“U” relationship between environmental instrument 
intensity and ecological efficiency. Zhang and Qu 
(2013) used a mathematical model to reveal an inverse 
W-type relationship between pollution tax, emission 
permit, unified emission standard, and green 
innovation. What’s more, many scholars also paid 
attention to the impact of a single environmental 
instrument on enterprises’ green innovation, focusing 
mainly on the effect of specific environmental 
instruments such as emission trading, environmental 
tax, and emission fees. Most of these scholars adopted 
the quasi-natural experiment method. However, 
testing single environmental instrument often fails to 
uncover the obvious effect of inducing green 
innovation. Villegas and Corina (2009) pointed out 
that emissions trading policies are not conducive to 
stimulating enterprises’ green innovation. Calel and 
Dechezleprêtre (2016) used the patent data of 
enterprises from 18 countries in the European Union 
(EU) carbon trading system and found that the system 
played a very limited and consistent role in low-
carbon technological innovation. A few foreign 
scholars compared the impact of different 
environmental instruments on innovation. For 
instance, Popp (2003) found that SO2 emission trade 
is more effective than technical standards in 
improving the desulfurization technology, which 
indicated that MBI play a stronger role in innovation 
than the CCI. 

As mentioned above, studies of the Porter 
hypothesis are yet to reach a consistent conclusion. 
Additionally, the literature mainly considers the 
environmental instrument and green innovation as a 
whole; few scholars have compared the different 
effects of CCI and MBI on different types of green 
innovation. As the largest developing country, the 
economic development levels, technological 
capabilities, science and technological policies, and 
other aspects across regions and provinces in China 
are differentiated. There are obvious regional 
characteristics and spatial agglomeration effects on 
green innovation. Compared to the eastern regions, the 
central and western regions are at an obvious 
disadvantage in green patent output. The spatial 
spillover of green innovation will obviously disturb 
the distinguishing of the actual effects of 
environmental regulations. However, current 
literature mostly uses the traditional econometric 
model, while neglects the spatial effects of 
environmental instruments on green innovation, 
which leads to a spatial correlation of observations. 

In this study, the effects of both CCI and MBI 
on different types of green innovation are explored 
through spatial effects. By doing so, this study makes 
three contributions. First, the spatial relevance of 
environmental instruments in promoting green 
innovation is considered. Second, this study is based 
on a majority of China’s 285 prefecture-level cities 
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and thus, avoids the impact of biased sample selection 
on the estimation results. Third, patent data at the 
prefecture level in China is collected and methods of 
international standard are used to identify green patent 
information, which is conducive to examine the real 
effects of different environmental instruments on 
green innovation more accurately. 

This paper is organized as follows. Section 2 
and Section 3 introduces the research design and the 
variables of this study, respectively. Next, Section 4 
presents empirical results and discussions from 
different dimensions. Finally, Section 5 concludes 
with relevant policy recommendations. 

 
2. Research design 

 
2.1. Spatial weight matrix selection 

 
In constructing the weight matrix based on 

socioeconomic correlations, it is difficult to clearly 
avoid correlations with other variables in the model, 
which is a shortcoming of its application. The 
spillover of green innovation analyzed in this study 
refers mainly to the spillover to adjacent cities. 
Therefore, the spatial weight matrix is applied 
according to the adjacency criteria in terms of 
geographical characteristics. 

The method of constructing the binary weight 
matrix W assumes that there are only one or two 
elements in the matrix, which is based upon whether 
sharing the border and is assumed as Luke-type. Here, 
1 implies the two regions are interconnected and have 
transitive effects on each other, while 0 implies they 
are unrelated. Finally, the matrix is standardized such 
that the sum of its elements is 1. 
 
2.2. Spatial econometric model 

 
2.2.1. Global spatial autocorrelation test 

Generally, the spatial autocorrelation of a 
spatial panel measurement model needs to be tested 
before it is established. At present, the global Moran’s 
I index is the most widely used indicator for this 
purpose. It can be constructed as given by Eq. (1): 
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wij is the spatial weight matrix; Ui and Uj are the 
observed values of the variables in regions i and j, 
respectively; and n is the number of spatial units. The 
value of global Moran’s I is between -1 and 1. The 
larger of the Moran I index, the more centralized 
distribution. What’s more, the significance must be 

tested in order to ensure its accuracy after the 
computation.  

 
2.2.2. Spatial model 

At present, classical spatial econometric 
models include the spatial autoregression model 
(SAR), spatial error model (SEM), and spatial Durbin 
model (SDM). The SAR is defined as expressed by  
Eq. (2): 
 

2, (0, ),ny Wy X Iσ= + β+ ε ε ∼ Νρ   (2) 
 

where: 𝑦𝑦 is the interpreted variable, W is the spatial 
weight matrix, 𝜌𝜌  is the spatial autoregressive 
coefficient, 𝑋𝑋 is a vector comprising the explanatory 
variables, 𝛽𝛽 is the coefficient of explanatory variables, 
and 𝜀𝜀 is the normal random error vector. 

Next, the SEM is defined as (Eq. 3): 
 
y , λWX β µ µ µ ε= + = +  … 

2(0, )nIσε ∼ Ν          (3) 
 
where: λ  is the spatial error coefficient of the 
interpreted variable while other variables have the 
same meaning as in the SAR model. 

Adding the spatial lagged terms of the 
explanatory variables to the SAR model yields the 
SDM. The corresponding regression equation is as 
follows (Eq. 4): 

 
y ρWy εX WXβ γ= + + +   …

2(0, )nIσε ∼ Ν             (4) 
 
where: γ is a parameter representing exogenous 
interactions; all other variables are the same as in the 
SEM and SAR models. 

Lagrange Multiplier (LM) tests are employed 
to choose the appropriate model. If the LM Lag term 
is more significant than the LM Error, and the Robust 
LM Lag is significant while the Robust LM Error is 
not significant, the SAR can be considered an 
appropriate model for the data; if the converse holds, 
then the SEM is considered to be more suitable. If, 
instead, all the terms are significant, SDM is suitable 
to estimate the coefficients. If all the terms are not 
significant, OLS model should be employed. The 
process of model selection is shown in Fig. 1. 

In the model, natural logarithm of each variable 
is taken to eliminate heteroscedasticity. Since there is 
path dependence in technological innovation (Ruttan, 
1997) and the impacts of environmental instruments 
may have a lag (Wang and Wang, 2011), the 
accumulation of early innovation as well as the impact 
of CCI and MBI on the current period are considered, 
and the model with one-period innovation and 
instrument variables is constructed. 
 
3. Data 
 
3.1. Sample and data 

 
As China covers a vast territory, comparing the 

effects of environmental instruments on green 
innovation in different regions can better promote the 
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improvement of regional environmental efficiency. 
This study selects prefecture-level cities of China as 
the preliminary sample and filters them according to 
the following criteria: (1) exclude prefecture-level 
cities that were established after 2008 and (2) exclude 
samples with missing data during the research period. 
Based on the above criteria, Tongren and Bijie cities 
in Guizhou, Danzhou and Sansha in Hainan, Hami and 

Turpan in Xinjiang, Haidong in Qinghai, and all cities 
in Tibet are eliminated; finally, 285 sample cities are 
obtained. It takes from one to three years for patents to 
go from the application to approval and publication 
stages; accordingly, the study’s sample period is from 
2008 to 2015.  

Fig. 2 presents the spatial distribution of the 
prefectural-level cities explored in this paper. 

 

 
 

Fig. 1. Flow chart of model selection 
 

 
 

Fig. 2. The regional distribution of studying prefectural-level cities 
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In terms of data, as mentioned, the sample 
covers a time span from 2008 to 2015. The main data 
sources are as follows. The green innovation indicator 
is obtained from the Shanghai Intellectual Property 
(Patent Information) Public Service Platform 
Retrieval System 
(http://www.shanghaiip.cn/Search/login.do). 

Measurement data of major pollutant 
emissions, foreign direct investment, gross industrial 
output, per capita gross domestic product (GDP), and 
local financial expenditure on science and technology 
of each prefecture-level city are derived from relevant 
China City Statistical Yearbooks (2009–2016). Data 
on pollution discharge fees are obtained from the 
China Environmental Yearbook. 
 
3.2. Variable definitions 
 
3.2.1. Green innovation 

The Green List of International Patent 
Classification launched by the World Intellectual 
Property Organization identifies seven types of green 
patents. Accordingly, this study uses three types of 
green patents: waste management, energy 
conservation, and alternative energy production as 
indicators of green innovation, and calculates the 
annual number of green patents of the prefecture-level 
cities in China. Green invention patents and green 
utility models are further distinguished according to 
the degree of innovation contained in, and the former 
is higher than that in the latter. A total of 284,981 
patents were reviewed in this study, yielding 255,247 
patents after eliminating those that were applied for by 
foreign units and other prefecture-level cities. By 
matching 187,000 postcodes of all regions with the zip 
code on the patent contact address, the number of 
patents of each prefecture-level city can be obtained 
for each year. 
 
3.2.2. Intensity of CCI 

CCI are government administrative 
instruments, whereby the government imposes 
mandatory emission reduction targets and related 
standards on enterprises so as to limit their emissions. 
Existing research has mainly used the environmental 
governance investment (Brunnermeier and Cohen, 
2003; Rubashkina et al., 2015) or pollution intensity 
(Domazlicky and Weber, 2004) to measure the 
intensity of the CCI. Based on the existing data, we 
learn from Li et al. (2019) and Ye et al. (2018), 
calculate the comprehensive index of pollutant 
emissions. Higher intensity of emissions indicates 
more stringent CCI. The comprehensive index of 
pollutant emissions is calculated mainly using the 
emissions of wastewater, sulfur dioxide (SO2), and 
smoke per unit of industrial output in each year. The 
calculation procedure is as follows. 

(1) Linear standardization of the emissions of 
different pollutants (Eq. 5) 
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max min
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j j

UE UE
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UE UE

 − =
−  (5)  

 
where: UEij indicates the emissions of the j-th 
pollutant per unit output of the i-th city, max(UEj) and 
min(UEj) indicate the maximum and minimum values 
of the UE across all cities in one year, respectively, 

and
s
ijUE  represents the value after linear 

standardization. 
(2) Calculation of the adjustment coefficients 

of pollutants (Eq. 6): 
 

/ij ij jA UE UE=  (6)  
 

The proportion of pollutants in different 
prefectural-level cities is different, and the emission 
intensity of different pollutants is also quite different. 
The adjustment coefficient Aij represents the 
approximate characteristic difference among different 

pollutants and jUE  is the average level of the j-th 
pollutant per unit output in all prefectural-level cities 
during the sample period. 

(3) Calculation of the CCI intensity (Eq. 7): 
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3
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 (7) 

 
3.2.3. Intensity of MBI 

MBI is mainly realized through taxes, fees, and 
emission permits. The Environmental Protection Law 
(Trial Implementation) of 1979 stipulated excessive 
pollution discharge fees should be levied in China. 
The policy has been implemented and remained 
relatively stable for many years. In consideration of 
the availability and reliability of the data, we select the 
pollution discharge fee of different prefectural-level 
cities per unit GDP as the agent variable. However, 
China has only announced a pollution discharge fee at 
the provincial level. In this paper, we suppose that a 
higher industrial output implies higher pollution 
discharge fees.  

Therefore, we calculate the proportion of the 
industrial output of prefecture-level cities to the total 
industrial output of the whole province and multiply it 
with the total pollution discharge fee of that province 
to derive the pollution discharge fee data of each of its 
prefecture-level cities in that year, (Eq. 8): 

 

/i

P
i P i

IOM PD
I

PBR
O

GD∗=
         (8) 

 
where: IOi represents the industrial output of the i-th 
city, IOP is the industrial output of the p-th province, 
which the i-th city belongs to. PDP is the pollution 
discharge fee of the p-th province, GDPi represents 
GDP of i-th city. 
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3.2.4. Control variables 

Economic development level (𝐸𝐸𝐸𝐸): We use per 
capital GDP to measure the level of economic 
development and converse based on 2008 data. (2) 
Research and development level (𝑅𝑅𝑅𝑅): the per capita 
local financial expenditure on science and technology 
is adopted and then deflated by the 2008 GDP deflator 
index to represent this measure, since this variable can 
increase the overall research and development level of 
the city and further drive green innovation. (3) Foreign 
direct investment (𝐹𝐹𝐹𝐹𝐹𝐹 ): The degree of economic 
openness is measured by the total amount of foreign 
direct investment. New technology and management 
with the entry of foreign direct investment may be 
absorbed by local enterprises and further stimulate 
innovation in undertaking regions. 

 
4. Results and discussion 

 
4.1. Analysis of regional differences in green 
innovation and environmental instruments 

 
Fig. 3 shows that the total amount of green 

innovation in China is decreasing with the east, 
central, and west regions, and that the eastern region 
has absolute advantages in this regard. During the 
years 2008-2015, the total amount of green innovation 
in the eastern region has increased significantly while 
the central and western regions shows flatter growth. 

Based on the means of each variable in Table 
1, the eastern region has the highest level of green 
innovation aligned with its highest share of green 
invention patents; this is followed by the west and the 
central regions, in that order. The western region has 
the strongest intensity of the CCI and the smallest 
intensity of the MBI. This may potentially result from 
the strategy of “Developing the Western Region”. 
Conversely, the eastern and central regions experience 
lower intensity of the CCI and stronger intensity of the 
MBI, which may be due to the high degree of 
marketization and low transaction costs. At a city 
level, based on the total number of green patents, 
Jingjin, Yangtze River Delta, Pan-Pearl River Delta, 
and Chengdu-Chongqing had high levels of green 
innovation in 2015. From the comprehensive index of 
pollutant emissions, it is seen that pollution is severe 
in western and central regions such as Heilongjiang, 
Ningxia, and Gansu, with a correspondingly strong 
intensity of the CCI. In addition, Chongqing, Yangtze 
River Delta, and Hebei experience the strongest 
intensity of the MBI according to the pollution 
discharge fee per unit GDP. 
 
4.2. Global spatial autocorrelation test 
 

Moran’s I was used to test the spatial 
dependence of green innovation in 285 prefecture-
level cities from 2008 to 2015 (Fig. 4). Based on the 
results, the spatial distribution of green innovation in 
285 prefecture-level cities in China has obvious 
positive autocorrelation.  

This implies that the spatial distribution of 
green innovation is not a random distribution, but a 
centralized distribution in areas with similar total 
green innovation levels. Areas with high green 
innovation have a near spatial trend, and areas with 
low green innovation are spatially adjacent to other 
low-green-innovation areas. 

 

 
 

Fig. 3. The total amount of green innovation in China and 
its three regions from 2008 to 2015 

 

 
 

Fig. 4. Global spatial autocorrelation test results 
 

4.3. Spatial panel model estimation results and 
discussion 

 
Although the sample size based on prefectural-

level cities of this paper is large (n=1995) to satisfy the 
asymptotic and unbiased estimation the normality of 
the data sample need to be considered (Ichinose et al., 
2015). 

However, the results of Jarque bera test show 
the non-normality of error distribution. Therefore, we 
use the maximum likelihood estimation developed by 
Shehata and Mickaiel (2013, 2014a, 2014b) which are 
suitable for the non-normal regression models in 
disturbance term. Stata 14.0 is used to estimate the 
effects of different environmental instruments on 
green innovation. The results are shown in Table 2. 

 The path dependence in technological 
innovation is obvious. On a nationwide basis, the CCI 
has significantly inhibited green innovation in the 
current period, and in the lagging period the effect is 
not significant. The negative effects may be a result of 
the costs of environmental instruments in the early 
implementation. Enhancing the CCI intensity will 
raise the cost of enterprises, which would crowd out 
enterprises’ R&D investment.  
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Table 1. Descriptive statistics of variables from 2008 to 2015 
 

Variables Eastern Region Central Region Western Region 
Mean Min  Max Mean Min  Max Mean Min  Max 

Patent/Term 229 0 7,683 49 0 1,088 46 0 1,931 
Invention patent/Term 106 0 4,413 21 0 540 22 0 1,138 

Utility model/Term 123 0 3,347 28 0 548 24 0 793 
Comprehensive index of 

pollutant emissions 0.0635 0.000011 15.6813 0.2344 0.0002 29.5562 0.4699 0.000085 18.9378 

Pollution discharge fee 
per unit GDP 0.2481 0.0087 1.2571 0.2551 0.0129 1.4807 0.2339 0.0201 1.8788 

FDI/Ten thousand dollars 145,350.3 1,387.0 2,100,000 49,034.9 0 734,303 32,115.6 0 1,100,000 
Per capital GDP/Yuan 35,313.83 10,050 109,044 21,548.25 6,455.27 94,546.3 21,657.7 3,602 136,429 

Per capita local financial 
expenditure on science 
and technology/Yuan 

114 5 1055 46 3 505 36 3 250 

 
Table 2. Spatial panel model estimation results of total green innovation 

 
Variable China Eastern Region Central Region Western Region 

ln (innovation_lag) 0.6796*** 

(0.000) 
0.8964*** 

(0.000) 
0.6935*** 

(0.000) 
0.3936*** 

(0.000) 

ln (CCI) -0.0469** 

(0.016) 
-0.0338* 

(0.099) 
-0.0141 
(0.498) 

-0.0107 
(0.736) 

ln (CCI_lag) -0.0023 
(0.904) 

0.0223 
(0.281) 

-0.0163 
(0.438) 

-0.0004 
(0.987) 

ln (MBI) -0.1171 
(0.201) 

-0.0816 

(0.356) 
-0.0700 
(0.581) 

0.1788 
(0.284) 

ln (MBI_lag) 0.3045*** 

(0.001) 
0.1269 

(0.154) 
0.2036* 
(0.099) 

0.2442 
(0.142) 

ln (FDI) 0.0306*** 

(0.000) 
0.0260 

(0.147) 
0.0953*** 

(0.000) 
0.0335*** 

(0.000) 

ln (ED) -0.0108*** 

(0.824) 
0.0022 
(0.934) 

-0.0632 

(0.262) 
0.1037 

(0.201) 

ln (RD) 0.2690*** 

(0.000) 
0.0810*** 

(0.001) 
0.2323*** 

(0.000) 
0.3615*** 

(0.000) 

LM Error 1.4176 
(0.233) 

4.8519** 

(0.027) 
1.0439 
(0.306) 

14.6014*** 

(0.001) 

LM Lag 0.0151 

(0.902) 
0.1923 
(0.661) 

0.2733 
(0.601) 

36.2019*** 

(0.000) 

LM Error (Robust) 310.6176*** 

(0.000) 
4.6786** 
(0.030) 

0.8084 
(0.368) 

174.9939*** 

(0.000) 

LM Lag (Robust) 309.2151*** (0.000) 0.0190 
(0.890) 

0.0378 
(0.845) 

196.5944*** 

(0.000) 
Model OLS SEM OLS SDM 

Jarque Bera 59400*** 519.7198*** 7137.8124*** 3371.4489*** 
Observations 1995 707 700 588 

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. p values are shown in parentheses. 
 

Thus, the CCI plays a negative role in current 
green innovation. After the implementation of CCI, 
enterprises will adjust their production and the 
negative effect tends to drop off over time. However, 
the MBI imposes insignificant effect on current green 
innovation, while it can effectively stimulate green 
innovation in the lagging period. The insignificant 
influence of the MBI in the current period may mainly 
be due to the failure of effective market transmission. 
In the lagging period, the effect of the MBI on green 
innovation supports the Porter hypothesis. Based on 
the mechanism of environmental instruments inducing 
technological innovation, the premise that policies can 
be effectively transmitted to enterprises, imposing 
significant cost pressures or economic incentives on 
the latter, can be drawn. 

As pursuers of profit maximization, when 
faced with a strict environmental instrument, 
enterprises will change, through green innovation, to 
reduce the cost and crowding-out effect brought about 

by environmental instruments. Improving production 
technology or promoting pollution control capabilities 
will eventually mitigate or offset the negative effects 
of environmental instruments on enterprises. 

From the sub-samples perspective, it can be 
found that the CCI in the current period only inhibits 
green innovation in the eastern region. The role of the 
CCI in the central and western regions is not obvious, 
which may be resulted from the inappropriate and 
inadequate monitoring. Next, the MBI has no 
significant effect on current green innovation for all 
regions. In the lagging period, the MBI promotes 
green innovation only in the central region. According 
to the MBI mechanism, the effect of the instrument 
should increase exogenous energy prices. 
Marketization of energy prices is the condition for the 
effective transmission of MBI (Cullen and Mansur, 
2014; Pettersson et al., 2012). The western region is 
located in the inland and is far from the economic 
development center, the insignificant effect of MBI on 
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green innovation may be resulted from its incomplete 
market mechanism. 

Although the market is more lively and 
effective in the eastern region, there are less industries 
with high energy consumption and its energy 

consumption such as coal, oil and electricity is 
smaller, which is less affected by the fluctuation of 
energy prices. The collection of pollution discharge 
fees has not formed an effective backward effect on 
green innovation.  

 
Table 3. Spatial panel model estimation results of green innovation patents 

 
Variable China Eastern Region Central Region Western Region 

ln (ip_lag) 0.4739*** 

(0.000) 
0.7669*** 

(0.000) 
0.4928*** 

(0.000) 
0.3298*** 

(0.000) 

ln (CCI) 0.0031 

(0.872) 
-0.0754** 
(0.037) 

-0.0754 
(0.037) 

-0.0138 

(0.690) 

ln (CCI_lag) -0.0290 
(0.133) 

0.0746** 
(0.040) 

0.0746 
(0.040) 

0.0165 
(0.625) 

ln (MBI) 0.1712 
(0.102) 

-0.2389 
(0.134) 

-0.1060 

(0.515) 
0.2337 
(0.205) 

ln (MBI_lag) 0.1815* 

(0.084) 
0.3942** 

(0.015) 
0.2258 

(0.157) 
0.2978 

(0.105) 

ln (FDI) 0.0422*** 

(0.000) 
0.0994*** 

(0.002) 
0.1473*** 

(0.000) 
0.0382*** 

(0.000) 

ln (ED) 0.1036** 

(0.030) 
0.1542 
(0.296) 

0.1056 
(0.161) 

-0.0298 

(0.741) 

ln (RD) 0.3938*** 

(0.000) 
0.1225** 

(0.013) 
0.2839*** 

(0.000) 
0.4177*** 

(0.000) 

LM Error 5.2983** 

(0.021) 
2.4229 
(0.119) 

2.3654 

(0.124) 
4.0803** 

(0.043) 

LM Lag 34.4909*** 

(0.000) 
1.6570 

(0.198) 
5.4168** 

(0.019) 
21.9172*** 

(0.000) 

LM Error (Robust) 435.8561*** (0.595) 1.5565 

(0.212) 
0.2244 
(0.635) 

207.3276*** 
(0.000) 

LM Lag (Robust) 465.0487*** 

(0.001) 
0.7906 
(0.373) 

3.2758* 

(0.070) 
225.1645*** 

(0.000) 
Model SDM OLS SAR SDM 

Jarque Bera 22600*** 50700*** 15500*** 1321.8286*** 
Observations 1995 707 700 588 

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. p values are shown in parentheses. 
 

Table 4. Spatial panel model estimation results of the green utility model 
 

Variable China Eastern Region Central Region Western Region 

ln (um_lag) 0.4571*** 

(0.000) 
0.7798*** 

(0.000) 
0.5779*** 

(0.000) 
0.3042*** 

(0.000) 

ln (CCI) 0.0169 

(0.316) 
-0.0646** 

(0.030) 
-0.0219 
(0.338) 

0.0365 
(0.258) 

ln (CCI_lag) -0.0350** 

(0.037) 
0.0494* 

(0.099) 
-0.0080 
(0.727) 

-0.0344 
(0.277) 

ln (MBI) 0.1852** 
(0.042) 

-0.2059 

(0.117) 
-0.1516 
(0.315) 

0.3190* 

(0.061) 

ln (MBI_lag) 0.1203 

(0.189) 
0.3235** 

(0.015) 
0.3348** 
(0.024) 

0.1451 
(0.392) 

ln (FDI) 0.0313*** 

(0.000) 
0.0382 

(0.147) 
0.0928*** 

(0.000) 
0.0262*** 

(0.004) 

ln (ED) 0.2168*** 

(0.000) 
0.1143 
(0.162) 

-0.0878** 

(0.005) 
0.1435* 

(0.085) 

ln (RD) 0.3663*** 

(0.000) 
0.1277*** 

(0.002) 
0.2902*** 

(0.000) 
0.4274*** 

(0.000) 

LM Error 75.5998*** 

(0.000) 
0.2582 
(0.611) 

11.9404*** 
(0.000) 

40.8064*** 

(0.000) 

LM Lag 105.4051*** 

(0.000) 
0.2329 
(0.629) 

3.3380* 
(0.067) 

63.6091*** 

(0.000) 

LM Error (Robust) 37.5997*** 

(0.000) 
0.0909 
(0.763) 

9.3159*** 
(0.002) 

161.6680*** 

(0.000) 

LM Lag (Robust) 67.4050*** 
(0.000) 

0.0656 
(0.797) 

0.7135 
(0.398) 

184.4707*** 

(0.000) 
Model SDM OLS SEM SDM 

Jarque Bera 33500*** 39.3989*** 1419.5912*** 1216.2830*** 
Observations 1995 707 700 588 

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. p values are shown in parentheses. 
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Considering the degree of innovation, we 
model sub-sample regressions of green invention 
patents and the green utility model (Tables 3-4, 
respectively) and obtain interesting results. From the 
above analysis, the MBI have no significant effect on 
green innovation both in the current and lagging 
periods in the central region; however, it has 
significant promotion on the green utility model in the 
central region in the lagging period. In addition, MBI 
drives the green utility model in the western region in 
the current period. This may be because of the rent-
seeking behavior in central and western regions: 
government only pursues the number of innovation 
while neglects the quality in order to achieve political 
achievements, which leads to a crowding-out effect on 
green invention patents. In addition, RD and FDI both 
promote green innovation, with the promoting effect 
of RD is significantly greater. While ED has a negative 
effect on green innovation, this may result from the 
“only GDP theory” whereby the excessive pursuit of 
GDP by local officials will be detrimental to green 
innovation.  
From the results of the sub-sample regressions, the 
positive effect of FDI on green innovation in central 
regions is highest, while 𝑅𝑅𝑅𝑅’s effect is most 
prominent in the western region. Moreover, 𝑅𝑅𝑅𝑅 plays 
a more important role in green innovation patents 
than in the green utility model. 
 
5. Conclusions 
 

Green innovation is of great importance for 
sustainable development in China. Due to the failure 
of the market mechanism in deciding the enterprises’ 
green innovation behavior, many countries have 
adopted a variety of environmental instruments.  

China is experiencing a change of pace in 
economic growth; hence, it is essential to clarify the 
effects of environmental instruments on green 
innovation and perfect the environmental instrument 
system. In this study, prefecture-level city samples are 
examined, and a spatial metrology model is proposed 
to estimate the effects of the CCI and MBI on green 
innovation, taking into account both regional and 
innovation type heterogeneity. The model includes 
one-period lagged innovation and environmental 
instrument variables. 

The results of this study are as follows: 
 From the national viewpoint, the CCI inhibits 

current green innovation while has no significant 
effect in the lagging period. The impact of the MBI in 
the current period is not significant, but it can 
obviously stimulate green innovation in the lagging 
period, which supports the Porter hypothesis.  
 Through regional estimations, it is found that 

the CCI only plays an obvious role in the eastern 
region, while the MBI only promotes the green 
innovation of the central region.  
 Moreover, analysis of different innovation 

types thrown up some intriguing results. The MBI 
only induce green innovation with lower innovation 

level while do not affect green innovation with high 
innovation level significantly both in the central and 
western regions.  
 From the results of the control variables, we 

find that 𝑅𝑅𝑅𝑅  and 𝐹𝐹𝐹𝐹𝐹𝐹  can obviously promote green 
innovation. However, the 𝐸𝐸𝐸𝐸  level inhibits green 
innovation. 𝑅𝑅𝑅𝑅 is most effective in the western region 
while 𝐹𝐹𝐹𝐹𝐹𝐹 is significantly more effective in the central 
regions. 

Based on these empirical results, we can draw 
the following policy implications: 

 Promote market-based transformation of 
environmental instrument tools 

The MBI is better than the CCI in driving green 
innovation. As such, China should gradually promote 
the transformation of its environmental instruments 
system and realize the key role of the market 
mechanism in promoting green innovation and 
impelling the green transformation of enterprises. In 
addition, China should create an improved and unified 
national carbon emission trading market through pilot 
projects of emission trading, and further build a 
trading mechanism that is suitable for green 
innovation. 

 Strengthen the guidance of high green 
innovation  

Government should pay attention to the 
differences in innovation categories and strengthen the 
guidance of high green innovation, that is, green 
invention patents. Specifically, the government should 
boost its science and technology budget, increase 
innovation subsidies, and build up regular evaluation 
on the effectiveness of innovation to prevent rent-
seeking behavior. 

 Perfect the environmental instrument 
system with targeted and spatial differences  

In the central and western regions, the 
government should strengthen its policy supervision, 
establish an open and clear review mechanism, and 
enhance the punishment mechanism to reduce rent-
seeking behavior. Moreover, in the western region, the 
government should focus on perfecting the market 
mechanism, reduce market-distorting behaviors such 
as price protection, and fully enlarge the innovation 
driving effect of the MBI. 

 Improve the construction of an external 
support system for green innovation 

The government should increase investment in 
green innovation and development, realize the 
leveraging role of government funds, and broaden the 
financing channels of technology funds, especially in 
the western region. Optimizing the business 
environment and paying attention to the quality of FDI 
are conducive for green innovation promotion, 
especially in the central and western regions. In 
addition, while pursuing economic growth, we should 
also pay attention to improving the quality and level 
of ED.  

Nonetheless, this study has some limitations. 
Firstly, given the availability of data at the prefecture 
level, the choice of agent variables for environmental 
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instruments is limited. With increasingly more urban 
statistical data to be released in the future, the proxy 
variables used in this study can be improved upon to 
enhance model robustness. Secondly, only the type 
and quantity of green patents (green invention patent 
and green utility model) are employed to measure the 
green innovation in cities is too one-sided to further 
identify green innovation that is more conducive to 
sustainable development. In the future, the screening 
of the quality of green patents should be further 
refined. Finally, the impact of environmental 
instruments on green innovation can be further 
analyzed from an urban agglomeration view so as to 
promote the construction of an ecological civilization 
and facilitate green economic transformation in China. 
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