Environmental Engineering and Management Journal

April 2021, Vol. 20, No. 4, 487-494 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

MODELING THE CHLORINE-CONVEYING PROCESS WITHIN A DRINKING WATER DISTRIBUTION NETWORK

Cristina-Mihaela Vîrlan, Daniel Toma*, Florian Stătescu, Nicolae Marcoie, Costel-Cătălin Prăjanu

"Gheorghe Asachi" Technical University of Iasi, Faculty of Hydrotechnical Engineering, Geodesy and Environmental Engineering, Department of Hydroamelioration and Environmental Protection, 65 Prof. Dimitrie Mangeron Blvd., 700050, Iasi, Romania

Abstract

The distribution network is the last component of a water supply system in which potable water must be provided to the consumer. The presence of chlorine in drinking water is a necessity and a guarantee that water is microbiologically compliant. The study was carried out by means of the Epanet 2.0 program on a future distribution network in the hilly area, in which a simulation period of 4 days was considered. The water quality analysis was performed using the flow rates resulting from the hydraulic simulation. To track the propagation of the contaminant through network pipelines, a maximum permissible value of 0.5 mg/L, entered during the entire simulation period, was considered. The reactions that occur in the bulk flow, were modeled by means of a 1st and 2nd order a decomposition law. The obtained values of the free residual chlorine concentration showed that during the 96 h of simulation, there were certain pipelines in which the chlorine concentration did not meet the minimum allowable limit of 0.1 mg/L. Modeling water quality offers the opportunity to view the decreasing of chlorine concentration, so that the free residual chlorine dosage can be optimized.

Key words: chlorine concentration decay, drinking water, EPANET, water distribution network

Received: June, 2020; Revised final: February, 2021; Accepted: March, 2021; Published in final edited form: April, 2021

^{*} Author to whom all correspondence should be addressed: e-mail: daniel_10hid@yahoo.com; Phone: +40721811373