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Abstract 
 
The main purpose of the present research was a comparative study of two functionalized sulfonated graphene oxide (SGO) for 
removal of selected pollutant (Azo-Cationic Basic Blue 41 dye) in aqueous solution. The two nano-adsorbents (GO/1,4-butane 
sultone (SGO1) and GO/1,3-propane sultone (SGO2)) were synthesized, and characterized by Scanning Electron Microscope (SEM), 
Brunauer-Emmett-Teller (BET), X-ray Crystallography (XRD), Raman spectroscopic, and Fourier-Transform Infrared 
Spectroscopy (FTIR) analysis. The adsorption process of BB41 dye onto two nano-adsorbents was investigated. Selected parameters 
including initial solution pH, initial BB41 concentration, adsorbent dose, and contact time were evaluated. pH= 8, initial BB41 dye 
concentration= 50 and 100 mg/L, adsorbent dose= 0.2 and 0.15 g/L and contact time= 60 and 30 minute at room temperature, were 
the optimum values of the parameters for SGO1 and SGO2, respectively. The maximum adsorption capacity with SGO1 and SGO2 
(assuming minimum removal of 80%) were found to be 274 and 434 mg/g. The study of isotherm and kinetics showed that both 
nano-adsorbents followed the Langmuir equilibrium model and were best fitted to the pseudo-second-order model. Moreover, 
according to the thermodynamic analysis the adsorption process, at all analyzed temperatures, was endothermic. The SGO2 nano-
adsorbent had shown higher efficiency than the SGO1 nano-adsorbent during four cycles of the regeneration/ recovery investigation.  
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1. Introduction 
 

Apart from having a destructive effect on the 
environment, synthetic dyes, which are used in 
different industries, have also been identified as 
carcinogenic and mutagenic materials (Zarezadeh-
Mehrizi and Badiei, 2014). Synthetic dyes are a major 
pollutant of water, an essential component of life and 
the Earth's ecosystem. It is, therefore, crucial to 
remove dyes from wastewater efficiently in order to 
protect human health as well as the quality of the 
environment (Basheer, 2018a, 2018b; Mubarak et al., 
2021; Shoushtarian et al., 2020). The Basic Blue 41 
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(BB41) azo-cationic dye is particularly suitable for 
acrylic substrates dyeing due to its low-cost and 
persistence; also, it can be applied to some polyester 
and polyamide types,  cotton, viscose, and wool 
(Roulia and Vassiliadis, 2005). BB41 is a non-
biodegradable dye due to its aromatic structure. 
Therefore, it remains in the environment for a long 
time (Zarezadeh-Mehrizi and Badiei, 2014).  

There are various methods to remove BB41 
from aqueous solutions, such as adsorption 
(Boudechiche et al., 2019; Jiang et al., 2013; Kooli et 
al., 2015; Mahmoodi et al., 2012; Regti et al., 2017), 
photocatalytic degradation (Mahmoodi and Abdi, 
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2019), sonochemical degradation (Abbasi and 
Razzaghi, 2008) and oxidation (Söğüt and Akgün, 
2009). Among these methods, adsorption is the most 
promising and efficient due to its simplicity, low-cost, 
and ease of use on a large-scale combined with the 
possibility of adsorption regeneration/ recovery. (Al 
Nafiey et al., 2017; Ali et al., 2018; Ali et al., 2019a; 
Teymourian et al., 2021). Despite these features, the 
adsorption efficiency in this process is limited by the 
specific surface, non-selectivity, active sites, and 
adsorption kinetics (Ali et al., 2018; Sharma et al., 
2015).  

Presently, graphene oxide (GO) and its 
derivatives are considered the most suitable nano-
adsorbents due to the high surface area and efficient 
adsorbent production (Ali et al., 2019c). However, the 
small size of nano-adsorbents, such as GO, can 
exacerbate the difficulty of their separation 
(regeneration/ recovery) from the environment 
(Sadegh et al., 2017). The addition of specific 
functional groups prevents the agglomeration of GO 
nano-adsorbents and has a significant influence on its 
properties, including capacity and adsorption rate, as 
well as analytical parameters, such as selectivity and 
tendency (Gu et al., 2018; Gul et al., 2016; Hu et al., 
2016).  Functionalized sulfonated graphene oxide 
(SGO) has recently been applied in the field of 
pharmaceutical chemistry and cell biology studies 
(Mondal, 2012). It has also been employed to attain 
increased efficiency in lithium-ion batteries (Li et al., 
2012) and methanol fuel cells (Heo et al., 2013), 
improve electrochemical properties of the poly-ortho-
aminophenol (Ehsani et al., 2017), and also dye 
removal from water (Scalese et al., 2016; Shen and 
Chen, 2015). However, to the best of our knowledge, 
SGO and its regeneration/ recovery in the adsorption 
process of BB41 has not been studied so far. 

The main aim of this study is to assess the 
performance of functionalized graphene oxide nano-
adsorbent added with 1,3 Propane Sultone and 1,4 
Butane Sultone (GO/1,4-butane sultone (SGO1) and 
GO/1,3-propane sultone (SGO2)), which are 
heterocyclic compounds that can introduce alkyl 
chains with SO3H- functionalities and can hence be 
utilized as sulfo alkylating agents (Mondal, 2012), for 
removal of BB41 dye from aqueous solution. The 
synthesis of the two nano-adsorbents and classical 
adsorption experiments were accomplished in order to 
investigate the effects of the main parameters, 
followed by related isotherm, kinetics, and 
thermodynamic studies. In addition, the regeneration/ 
recovery of the SGO1 and SGO2 were also assessed 
using a modified domestic microwave oven. 
 
2. Materials and methods 
 
2.1. Preparation and characterization of SGO1 and 
SGO2 
  

Fig. 1 briefly demonstrates the procedure of 
preparing the two SGOs. The synthesis of GO from 
natural graphite was accomplished using the modified 

Hummer method (Kowsari and Mohammadi, 2016). 
To prepare the nano-adsorbents, dried graphene oxide 
(2 g) was added to 20 mL of dimethyl sulfoxide 
(DMSO) and 1-butyl 3-methylimidazolium bromide 
(4 g) and triphenylphosphine (1 g) were added to the 
solution and stirred. In the next step, 
hexamethylenediamine (2 g) was added to the 
resulting solution and thoroughly stirred at 140 °C for 
12 hours using the stirrer. Eventually, the amine-
functionalized graphene oxide (GOA) was chilled at 
room temperature and washed with 20 mL of 
dichloromethane (CH2Cl2). To synthesize SGO1 and 
SGO2, 1,4 butane sultone and 1,3 propane sultone 
(Sigma-Aldrich Corporation) were dissolved in 
DMSO, mixed with GOA and refluxed for 24 hours, 
separately. At last, two filtered SGO nano-adsorbents 
were washed with 20 mL of CH2Cl2 and dried in the 
oven. All the chemicals used as received without 
further purification from Merck & Co., Inc. 

In order to characterize SGO1 and SGO2 nano-
adsorbents, Scanning Electron Microscope (SEM), 
Brunauer-Emmett-Teller (BET), X-ray 
Crystallography (XRD), Raman spectroscopic, and 
Fourier-Transform Infrared Spectroscopy (FTIR) 
were performed. The XRD analysis was carried out 
using an X-ray diffractometer (Philips-Holland 
PW1730) with CuKα radiation (λ = 1.5406 Å) at 40 
kV, and FT-IR analysis was performed with a Nexus 
670 (Thermo-USA) in the spectral range of 4000 to 
8000 cm−1 using KBr discs. Raman spectroscopy was 
conducted using a Raman microscope (Renishaw-
UK). The morphologies of SGO1 and SGO2 were 
observed by SEM (Seron Technology, AIS2100, 
South Korea) operating at 20 kV, and BET analysis 
was performed by N2 adsorption/desorption isotherms 
at 77K using Belsorp mini II analyzer (Bel-Japan).  
 
2.2. Adsorption experiments 
 

BB41 was provided by Alvan Sabet Company 
(Iran), and its structure and assets are detailed in Table 
1. The pH of the solution was adjusted with H2SO4 and 
NaOH and determined by a 340i/SET pH meter 
(WTW-Germany). All adsorption experiments were 
accomplished with 100 mL Erlenmeyer flasks using a 
batch technique, and the solution was agitated at 200 
rpm with a standard shaker (Edward Buhler, 
Germany).   

Afterward, the adsorption capacity was studied 
by dispersing a specific adsorbent dose using an 
ultrasonic bath (SonoSwiss, SW1H-Switzerland) for 3 
minutes into 25mL of each specific initial dye 
concentration of BB41 aqueous solution, and the 
sample was centrifuged (Hettich, EBA 21-Germany) 
at 6000 rpm for 10 minutes for detachment of 
suspended particles (Karimifard and Alavi 
Moghaddam, 2016a). 

It should be noted that in order to prevent the 
accumulation of nano-adsorbents, an ultrasonic bath 
was used before the dye solution and nano-adsorbent 
were placed on the orbital mixer. The use of the 
ultrasonic bath for over 10 minutes reduces the 
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removal efficiency due to the agglomeration of 
nanoparticles. Accordingly, a 3-minute sonication was 
considered in order to prevent excessive effects of 
sonication in dye removal and possible accumulation 
of nano-adsorbent. Additionally, a spectrophotometer 
(HACH, DR/400, USA) was utilized to measure the 
BB41 concentration at 609 nm (λmax). The amount of 
dye adsorbed by the adsorbents (q) and the percentage 
of dye removal (R) were computed using Eqs. (1-2):  
 

Dye removal efficiency (%) =
C0-Cf

C0
×100                (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐 (𝑚𝑚𝑚𝑚/𝑚𝑚 ) =
(𝐶𝐶0−𝐶𝐶𝑓𝑓)𝑉𝑉

𝑀𝑀
           (2) 

 

where C0 = the initial dye solution concentration 
(mg/L), Cf  = the final solution concentration (mg/L), 
V = solution volume (L), and M = mass of adsorbents 
(g) (Baird, 2017).  

It should be mentioned that since the 
concentration of BB41 solution decreases by 30% 
without adsorbent addition at high pH values (≥10), 
the dye removal mechanism does not only depend on 
the adsorption process. 
 

 

 
 

Fig. 1. Procedure of preparing sulfonated graphene oxides in the present study (SGO1 and SGO2) 

 2051 



 
Bavojdan et al./Environmental Engineering and Management Journal 20 (2021), 12, 2049-2060  

 
 

Table 1. The structure and general properties of BB41 
 

Characteristics Value Chemical structure 
Molecular formula C20H26N4O6S2 

 

λmax (nm) 609 

Molecular weight (MW) 482.57 

After adsorption experiments, process 
isotherm, kinetic, and thermodynamic were studied. 
Isotherm data were studied by fitting them into various 
equilibrium models (Ali et al., 2019c; Karimifard & 
Alavi Moghaddam, 2016a). To analyze the isotherm 
of BB41 adsorption onto SGO1 and SGO2, the 
Langmuir/ Freundlich/ Temkin/ Dubinin 
Radushkevich isotherm models were used. 

Kinetic equations are utilized in order to 
predict and describe the behavior of the adsorbed 
molecules (per unit time) and/ or the adsorption rate 
(Tran et al., 2017). Herein, the kinetics of BB41 
adsorption onto SGO1 and SGO2 were studied using 
two kinetic equations, Pseudo-First-Order/ Pseudo-
Second-Order models. 

The thermodynamic parameters indicate the 
spontaneity and feasibility, endothermic or 
exothermic reaction, and entropy changes during the 
adsorption process (Jaycock and Parfitt, 1981; Uğurlu, 
2009). The thermodynamic parameters of adsorption, 
like standard enthalpy change (ΔH° (kJ/mol)), Gibbs 
free energy change (ΔG° (kJ/mol)), and standard 
entropy change (ΔS° (J/mol.K)), were  also calculated 
(Lima et al., 2019). 

Due to the economic cost and environmental 
problems associated with expensive adsorbents, the 
applicability of any adsorbents depends on their 
capability of regeneration/ recovery after the 
adsorption process should be considered (Ali et al., 
2019b; Karimifard and Alavi Moghaddam, 2016b). 
Microwave regeneration has recently been considered 
as a novel thermal method due to its ability of 
molecular-level heating in addition to its energy and 
space saving capability, which leads to rapid and 
homogeneous regeneration of materials. This 
regeneration method was also studied previously in 
our research group (Karimifard and Alavi 
Moghaddam, 2016b; Shoushtarian et al., 2020).  

In order to saturate the SGOs for regeneration/ 
reuse, the SGO1 (0.015 g) and SGO2 (0.02g) were 
added to the BB41 solution (50 and 100 mg/L) and 
stirred for 3 hours (Based on pre-tests), respectively. 
Then, to separate the saturated SGOs from the BB41 
solution, the mixture was washed and filtered with 
double-distilled water and 0.2 μm filters (PTFE, 
Sartorius, Germany) and the saturated SGOs were 
dried at 80 ˚C for 8 hours in the oven. Thermal 
regeneration/ recovery of SGO1 and SGO2 
(considering the carbonaceous base of the two nano- 

 

adsorbents) was then performed using modified 
domestic microwave oven according to Karimifard 
and Alavi Moghaddam (2016c) for four consecutive 
periods (Karimifard and Alavi Moghaddam, 2016b). 
The following equations were used to study 
regenerated SGOs adsorption capacities (Eqs. 3-4): 
 
𝑅𝑅𝑅𝑅𝑚𝑚𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑐𝑐𝐴𝐴𝑅𝑅𝐴𝐴𝑐𝑐𝑐𝑐 = 𝑅𝑅𝐸𝐸(%) =  𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
× 100 (3) 

 
𝑆𝑆𝐴𝐴𝑅𝑅𝐴𝐴 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑐𝑐𝐴𝐴𝑅𝑅𝐴𝐴𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑆𝑆𝐸𝐸(%) =  𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖−1)
× 100  (4) 

 
It should be noted that qreg (mg/g) and qinitial 

(mg/g) should be calculated after the regeneration 
process and at the initial conditions, respectively. (The 
regeneration cycle is represented by i). 

 
3. Results and discussion 
 
3.1. Characterization of SGO1 and SGO2 

 
The SEM (Fig. 2) and BET tests were used to 

characterize the morphology and surface structure of 
the nano-adsorbents, respectively. As shown in the 
illustrations, the functional groups of the graphene 
oxide (1,3 propane sultone and 1,4 butane sultone) in 
this study have led to the formation of two-
dimensional sheets with superficial surface roughness. 
The presence of sulfur (SO3H-) in the structure of the 
two nano-adsorbents causes this roughness, which is 
considered to be useful for fortified interfacial 
interactions (Cao et al., 2018; Ch’Ng et al., 2016; Heo 
et al., 2013; Mohamadi et al., 2020).   

In addition, according to the BET tests results, 
the specific surface area of SGO1 (8.43 m2/g) and 
SGO2 (10.37 m2/g) were reduced compared with that 
of pristine GO (38 m2/g). The specific surface area 
decrease of functionalized GO could be due to its 
defective cutting as well as the massification of the 
particles during nano-adsorbents preparation (Abdi et 
al., 2017; Fang et al., 2014; Zhang et al., 2014). 

Fig. 3 shows the structural properties of the two 
nano-adsorbents, including their XRD, FT-IR and 
Raman spectra. The typical diffraction peaks in the 
XRD pattern (Fig. 3a) were observed at 2θ= 24.45ᵒ 
and 43.13ᵒ for SGO1 and 2θ= 24.57ᵒ and 42.91ᵒ for 
SGO2, corresponding well to the (002) and (100) 
planes of reduced graphene oxide (rGO) according to 
the interpretations of similar studies (Loryuenyong et 
al., 2013; Seifvand and Kowsari, 2017).  
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Fig. 2. SEM images of (a) SGO1 and (b) SGO2 

 
The connections of the covalent functional 

groups are indicated by Raman spectra of SGO1 and 
SGO2 (Fig. 3b). The D band (mainly related to the sp3 
defects) and G band (related to the sp2 bonded carbon 
atoms) are the essential bands of Raman spectroscopy 
for nano-adsorbents (Pant et al., 2016). The D and G 
bands intensity ratio (ID/IG), shows the defects found 
on the graphene surface (Seifvand and Kowsari, 
2017).  An increase in ID/IG ratio of SGO1 (0.94) and  

SGO2 (0.95) compared with GO (0.9) represents the 
crystalline growth. Also, according to Cao et al. 
(2018), the oxygenated functional groups decrease by 
establishing a covalent bond between the surface of 
the graphene oxide and the functional groups (Cao et 
al., 2018). Furthermore, based on the FT-IR spectrum 
results (Fig. 3c and Table 2), the functionalization of 
the graphene oxide with 1,3 propane sultone and 1,4 
butane sultone was accomplished.  
 

 
 

Fig. 3. Comparative structural properties of SGO1 and SGO2 (a) XRD patterns; 
(b) Raman spectrum; (c) FT-IR spectra 
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Table 2. FT-IR analysis based on the SGO1 and SGO2 bonds wavelengths, compared to the similar studies 
 

Bonds type Wavelength (cm-1) Similarly reported wavelength (cm-1) 
Reference SGO1 SGO2 

Hydroxyl stretching (OH) 3429 3434 3300-3500 
Chen X.  et al. (2017); Gu et al. (2018) 

Aromatic (C-H) 2925 2925 2924 
 Zhang L. et al. (2018) 

Carbonyl (C=O) 1728 1728 1728 
Tajima et al. (2017) 

Conjugated carbon (C=C) 1623 1580 1639 
 Chen L. et al. (2017) 

Epoxy (C-O-C) 1452 1452 1445 
 Chen L.et al. (2017) 

stretching vibration (C-OH) 1253 1246 1224 
Tajima et al. (2017) 

stretching vibration (C-N) 1105 1106 1132 
 Chen L. et al. (2017) 

stretching vibration (S=O) 1031 1029 1029 and 1088 
Beydaghi et al. (2014); Cao et al. (2018) 

flexural vibration (C=C) 530-913 530-913 542-976 
Tajima et al. (2017) 

 
3.2. Effects of important parameters in BB41 
adsorption onto SGO1 and SGO2  
 
3.2.1. Effect of initial pH  

As presented in Fig. 4a, the effect of initial pH 
on BB41 removal onto SGO1 and SGO2 was assessed 
in the range of 3 to 9 under the following conditions: 
Contact time= 60 and 30 minute, adsorbent dose= 0.2 
and 0.15 g/L, and initial dye concentration= 50 and 
100 mg/L, respectively. The BB41 removal efficiency 
and adsorption capacity (q) were increased from 43% 
(q= 142 mg/g) to 85% (q= 274 mg/g) for SGO1 and 
44% (q= 216 mg/g) to 90% (q= 434 mg/g) for SGO2. 
This was partly resulted from the formation and 
augmentation of OH− molecules with changing the pH 
values from 3 to 9 (get more negative). The increase 
in the adsorption process was also due to the 
competition between the BB41 dye molecules (with 
positive electric charges) and OH− molecules (with 
negative charges) for adsorption sites on the surface of 
the SGOs (with negative charges).  

In this competition, not only did the OH− 
concentration decrease, but also the amount of BB41 
adsorbed onto the SGOs increased. Due to the fact that 
increasing the pH values from 8 to 9 in both nano-
adsorbents did not significantly change the dye 
removal efficiency, the optimum initial pH for both 
SGO1 and SGO2 was considered as 8 for the 
subsequent experiments. 

 
3.2.2. Effect of initial BB41 concentration:  

In the next stage of investigation of BB41 
adsorption onto SGO1 and SGO2, the effect of the 
initial concentration of BB41 was evaluated under the 
following conditions: Contact time = 60 and 30 min, 
adsorbent dose = 0.2 and 0.15 g/L, and pH = 8, 
respectively. Under the mentioned conditions, in the 
process of BB41 removal using SGO1, increasing the 
initial BB41 dye concentration led to a steady increase 

in the adsorption capacity (q) (presented in Fig. 4b) 
from 128 mg/g (C0 = 20 ppm) to 333 mg/g (C0 =125 
ppm). Also, with SGO2 the adsorption capacity 
increased from 123 mg/g (C0 = 25 ppm) to 480 mg/g 
(C0 = 200 ppm). Therefore, by applying the minimum 
removal of 80% and maximizing the adsorption 
capacity, the initial dye concentration of SGO1 and 
SGO2 was selected to be 50 and 100 ppm with an 
adsorption capacity of 279 and 421 mg/g, sequentially. 

 
3.2.3. Effect of adsorbent dose  

In this study, the adsorbent dose effect on 
BB41 adsorption, as one of the important parameters, 
was evaluated (Fig. 4c). The effects of SGO1 and 
SGO2 doses, ranging from 0.05 to 0.35 g/L, were 
investigated for the BB41 adsorption, as follows: 
Contact time= 60 and 30 minute, initial dye 
concentration= 50 and 100 mg/L, and pH= 8, 
respectively. The adsorption capacity decreased from 
551 to 276 mg/g (using SGO1) and 982 to 438 mg/g 
(using SGO2) due to increase in SGO1 and SGO2 doses 
from 0.05 to 0.15 g/L and 0.05 to 0.2 g/L, respectively. 
Accordingly, SGO1 and SGO2 doses of 0.15 g/L and 
0.2 g/L were considered (R> 80% and q maximum) 
for the subsequent experiments. 

 
3.2.4. Effect of contact time 

Figure 3d illustrates the effect of agitation time 
on the removal of BB41 using SGO1 and SGO2 with 
optimum values, resulting from previous stages, as 
follows: Adsorbent dose= 0.2 and 0.15 g/L, initial dye 
concentration= 50 and 100 mg/L, and pH= 8 
respectively. Approximately 80% of dye adsorption 
on both nano-adsorbents occurred in the first 5 
minutes (because of the ample active sites such as 
hydroxyl, carboxyl, and amino groups). The dye 
removal efficiency was relatively the same and above 
80% with SGO1 after 60 minutes and after 30 minutes 
with SGO2; therefore, the optimum contact time of 
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BB41 adsorption with the nano-adsorbents were 
considered to be 60 and 30 minutes for SGO1 and 
SGO2 respectively. 

 
3.2.5. Effect of temperature 

Temperature increase leads to growth of the 
active site and flux of particles in the soluble phase 
(Liu et al., 2018). The BB41 dye removal capacity in 
the adsorption process (Fig. 4e) using SGO1 and SGO2 
improved as the temperature was increased (10 °C to 
70 °C), which indicates that the adsorption of BB41 
using the two nano-adsorbents is thermo-sensitive. 

However, considering the before-mentioned 
constraints, the optimum temperature was selected to 
be 27oC (room temperature). 

Subsequently, the maximum adsorption 
capacities of several studies evaluating BB41 
adsorption were then compared in Table 3. Eventually, 
the maximum adsorption capacities of BB41 removal 
using SGO1 and SGO2 were 274 mg/g and 434 mg/g 
considering the optimum values mentioned above. 
The nano adsorbents used in this study were 
competitive and proper choices for BB41 removal 
compared with other adsorbents (Table 3). 

 

 
 

Fig. 4. The effect of Initial pH (a); Initial dye concentration (b); Adsorbents dose (c); Contact time (d); Temperature (e);  
on the adsorption process of BB41 using SGO1 and SGO2 
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Table 3. Comparison of the most considered adsorbents used to remove BB41 
 

Adsorbent q (mg/g) Reference 
Sodium Alginate 12 Yamini et al. (2018) 
N, F-codoped flower-like TiO2 Microspheres 143 Jiang et al. (2013) 
Nanoporous Silica 345 Zarezadeh-Mehrizi and Badiei (2014) 
Brick Waste 70 Kooli et al. (2015) 
Reduced Graphene Oxide 143.6 Kimiagar et al. (2016) 
Graphene Oxide/1,4 Butane Sultone (SGO1) 274 Present study 
Graphene Oxide/1,3 Propane Sultone (SGO2) 434 Present study 

3.3. Adsorption isotherms 
  

The Langmuir, Freundlich, Temkin, and 
Dubinin-Radushkevich isotherm equations and main 
parameters for BB41 removal using SGO1 and SGO2 
are reported in Table 4. The adsorption processes of 
the two nano-adsorbents follow the Langmuir 
isotherm with a correlation coefficient (R2) of 0.9970  
for SGO1 and 0.9965 for SGO2. Based on this 
compliance with the Langmuir isotherm, adsorption is 
more likely to occur in single layers and on specific 
active and homogeneity sites on the adsorbent 
surfaces.  

It also shows that each active surface contains 
only one layer and has uniform adsorption energy 
(Ayawei et al., 2017).  
 
3.4. Adsorption kinetics 
 

The corresponding parameters of the pseudo-
first-order and pseudo-second-order kinetics are 
presented in Table 5. BB41 adsorption using SGO1 
and SGO2 coincides with the R2 of 0.9995 (SGO1) and 
0.9994 (SGO2) on the pseudo-second-order equation, 
which indicates that the BB41 adsorption onto both 
nano-adsorbents was a chemical process. 
 

 
Table 4. The fitting parameters of adsorption isotherms for BB41 adsorption by SGO1 and SGO2 

 

Isotherm 
model Equation Equation factors definition Fitting 

parameters 

Nano-adsorbents 

SGO1 SGO2 

Langmuir 
 

𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

=  
1

𝐾𝐾𝐿𝐿𝑞𝑞𝑚𝑚
+
𝐶𝐶𝑒𝑒
𝑞𝑞𝑚𝑚

 

Ce = Dye concentration at 
equilibrium 
qe = Adsorption capacity at 
equilibrium 
KL = Langmuir constant 
qm = maximum adsorption 
capacity 

R2 0.997 0.996 

qmax (mg/L) 333.34 454.54 

KL (L/mg) 0.682 0.76 

Freundlich 
 𝑙𝑙𝐴𝐴 𝑞𝑞𝑒𝑒 = 𝑙𝑙𝐴𝐴 𝐾𝐾𝐹𝐹 +

1
𝐴𝐴 𝑙𝑙𝐴𝐴 𝐶𝐶𝑒𝑒 

KF = Freundlich constant 
n = Adsorption intensity 

R2 0.898 0.936 

Kf  (mg/g)- 
(L/mg)1/n 157.32 181.39 

n 4.92 4.17 

Temkin 
 𝑞𝑞𝑒𝑒 = 𝐵𝐵𝑙𝑙 𝑙𝑙𝐴𝐴 𝐾𝐾𝑇𝑇 + 𝐵𝐵𝑙𝑙 𝑙𝑙𝐴𝐴 𝐶𝐶𝑒𝑒 

Bl = Heat of adsorption 
dimensionless parameter 
KT = Equilibrium binding 
constant 

R2 0.948 0.964 

KT (L/mg) 29.35 18.61 

B1 (m/g) 46.267 66.84 

D-R ln qe = ln qs 
– 2BRT ln (1+ 1/Ce) 

B = Mean adsorption energy per 
unit of the adsorbed molecule 
(E = (1/√2B)) 
 
T = Absolute temperature 
(Kelvin) 
 
R = Gas constant 
(8.31 J.mol−1. k−1) 
 
qs = Saturation capacity 

R2 0.958 0.903 

qs (mg/g) 321.43 436.71 

B (mol2.j2) 0.0003 0.0002 

E (kj/mol) 45.61 49.90 
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Table 5. The fitting parameters of the general-order kinetic model for BB41 adsorption using SGO1 and SGO2 

 

Kinetic model Equation Definition of factors in 
Equation  

Fitting 
parameters 

Nano-adsorbents 

SGO1 SGO2 

 Pseudo-first-order 
 𝑙𝑙𝐴𝐴𝑚𝑚(𝑞𝑞𝑒𝑒 − 𝑞𝑞𝑡𝑡) = 𝑙𝑙𝐴𝐴𝑚𝑚 𝑞𝑞𝑒𝑒 −

𝐾𝐾𝑙𝑙
2.303 𝐴𝐴 

 qe = Adsorption capacity at 
equilibrium 
 

 qt = Adsorption capacity at 
time t (min).(mg/g) 
 

 k1 = Pseudo-first-order rate 
constant 

 R2 0.949 0.955 

 k1 (g/mg-min) 0.0341 0.0341 

 qe (mg/g) 92.305 92.305 

 Pseudo-second-
order 

𝐴𝐴
𝑞𝑞𝑡𝑡

=
1

𝐾𝐾2𝑞𝑞𝑒𝑒2
+

1
𝑞𝑞𝑒𝑒
𝐴𝐴  k2 = Pseudo-second-order 

rate constant 

 R2 0.9995 0.9994 
 k2 (min-1) 0.0512 0.0046 
 qe (mg/g) 78.125 312.5 

3.5. Adsorption thermodynamic 
  

The linear regression diagrams of the 
thermodynamic equation are plotted based on Van't 
Hoff presented in Table 6. Positive values of ΔH and 
ΔS indicate that BB41removal using SGO1 and SGO2 
is endothermic. Consequently, both nano-adsorbents 
could be effectively used in the dye adsorption 
process. Also, the decrease in ΔG with increasing 
temperature reveals that the adsorption process was 
spontaneous at higher temperatures and the negative 
values of ΔG point out that adsorption can be done at 
room temperature.  
 
3.6. Regeneration/ Recovery of SGO1 and SGO2 
 

In this study, SGO1 and SGO2 were 
regenerated/   reused    (4  cycles)     by     microwave  

irradiation (Table 7). The adsorption capacity (q) 
decreased on a smooth basis following the subsequent 
regeneration cycles.  

This downward trend could be attributed 
mainly to incomplete burning accumulation, which 
plays the role of   undamaged   waste   material   and 
changes the structures of the functional groups in the 
nano-adsorbents, leading to reduction in adsorption 
capacity. 
 
4. Conclusions 
 

In the present study, two functionalized 
sulfonated graphene oxide (GO/1,4-butane sultone 
(SGO1) and GO/1,3-propane sultone (SGO2)) were 
synthesized, and the success of the covalent functional 
groups’ connections was confirmed by SEM, BET, 
XRD, FTIR, and Raman spectroscopy analysis. 
 

 
Table 6. The thermodynamic parameters for BB41 adsorption by SGO1 and SGO2 

 
Fitting 

parameters Equation Equation factors definition 
Nano-adsorbents 

SGO1 SGO2 

ΔG (kJ/mol) ΔG = -RTlnKc 

 
R = Gas constant (8.31 J.mol−1. k−1) 
 
T = Absolute temperature (oK) 
 
Kc = Constant adsorption equilibrium 

-1.1934 (T=283o) -1.7 (T=283o) 

-3.3145 (T=296o) -3.85 (T=296o) 

-5.7485 (T=318o) -6.6 (T=318o) 

-8.5825 (T=343o) -9.22 (T=343o) 

ΔH (kJ/mol) ΔH = ΔG + TΔS - 32.9175 33.44 

ΔS (J/K.mol) 𝑙𝑙𝐴𝐴𝐾𝐾𝐶𝐶 =
∆𝑆𝑆
𝑅𝑅 −

∆𝐻𝐻
𝑅𝑅𝑅𝑅 - 121.382 125.107 

R2 - - 0.991 0.988 

Kc (mg/L) KC =  ( CAe
100−CAe

) 
 

CAe = Amount adsorbed on solids at 
equilibrium 

1.66 (T=283o) 2.05 (T=283o) 

3.845 (T=296o) 4.77 (T=296o) 

8.8 (T=318o) 12.15 (T=318o) 

20.27 (T=343o) 25.31 (T=343o) 

 

 2057 



 
Bavojdan et al./Environmental Engineering and Management Journal 20 (2021), 12, 2049-2060  

 
 

Table 7. The different regeneration/ recovery periods of SGO1 and SGO2 
 

Status SGO1 SGO2 
q (mg/g) SSE (%) RE (%) q (mg/g) SSE (%) RE (%) 

Raw 280 - - 420 - - 
First period 195 69 69 386 91 91 
Second period 174 89 62 350 90 83 
Third period 150 86 53 315 90 75 
Fourth period 124 82 44 295 93 61 

 
The effects of the important parameters in 

BB41 adsorption onto SGO1 and SGO2 were evaluated 
with following conditions: pH=8, initial dyeBB41 
concentration= 50 and 100 mg/L, adsorbent dose= 0.2 
and 0.15 g/L and contact time= 60 and 30 minute at 
room temperature; resulting in q= 274 and 434 mg/L 
(with removal efficiency of 85% and 90% for SGO1 
and SGO2), respectively. High adsorption capacity 
indicated that SGO1 and SGO2 were competitive and 
suitable nano-adsorbents for BB41 removal. 

The Langmuir isotherm best described the 
BB41 adsorption onto the two nano-adsorbents 
(R2=0.997 (SGO1) and R2= 0.996 (SGO2)); the 
Pseudo-second Order kinetic model (R2=0.9995 
(SGO1) and R2=0.9994 (SGO2)), and the 
thermodynamic study (R2=0.991 (SGO1) and 
R2=0.988 (SGO2)) did as well. At the last stages of the 
present study, the nano-adsorbents were regenerated/ 
recovered in 4 cycles and the regeneration efficiency 
decreased from 69% to 44% in SGO1 (q=124 mg/L in 
fourth period), and from 91% to 61% in SGO2 (q=295 
mg/L in fourth period).  

Eventually, the results showed that the SGO2 
nano-absorbent demonstrated higher adsorption 
capacity (434 mg/g) compared with SGO1 (274 mg/g) 
and it was recovered more efficiently with the selected 
thermal regeneration method (modified domestic 
microwave oven). Moreover, the regenerated SGOs 
were still effective nano-adsorbents for BB41 
removal, even after multiple regenerations/ reuses. 
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	Apart from having a destructive effect on the environment, synthetic dyes, which are used in different industries, have also been identified as carcinogenic and mutagenic materials (Zarezadeh-Mehrizi and Badiei, 2014). Synthetic dyes are a major pollu...
	There are various methods to remove BB41 from aqueous solutions, such as adsorption (Boudechiche et al., 2019; Jiang et al., 2013; Kooli et al., 2015; Mahmoodi et al., 2012; Regti et al., 2017), photocatalytic degradation (Mahmoodi and Abdi, 2019), so...
	Presently, graphene oxide (GO) and its derivatives are considered the most suitable nano-adsorbents due to the high surface area and efficient adsorbent production (Ali et al., 2019c). However, the small size of nano-adsorbents, such as GO, can exacer...
	The main aim of this study is to assess the performance of functionalized graphene oxide nano-adsorbent added with 1,3 Propane Sultone and 1,4 Butane Sultone (GO/1,4-butane sultone (SGO1) and GO/1,3-propane sultone (SGO2)), which are heterocyclic comp...
	2. Materials and methods
	2.1. Preparation and characterization of SGO1 and SGO2
	Fig. 1 briefly demonstrates the procedure of preparing the two SGOs. The synthesis of GO from natural graphite was accomplished using the modified Hummer method (Kowsari and Mohammadi, 2016). To prepare the nano-adsorbents, dried graphene oxide (2 g) ...
	In order to characterize SGO1 and SGO2 nano-adsorbents, Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET), X-ray Crystallography (XRD), Raman spectroscopic, and Fourier-Transform Infrared Spectroscopy (FTIR) were performed. The XRD anal...
	2.2. Adsorption experiments
	BB41 was provided by Alvan Sabet Company (Iran), and its structure and assets are detailed in Table 1. The pH of the solution was adjusted with H2SO4 and NaOH and determined by a 340i/SET pH meter (WTW-Germany). All adsorption experiments were accompl...
	Afterward, the adsorption capacity was studied by dispersing a specific adsorbent dose using an ultrasonic bath (SonoSwiss, SW1H-Switzerland) for 3 minutes into 25mL of each specific initial dye concentration of BB41 aqueous solution, and the sample w...
	It should be noted that in order to prevent the accumulation of nano-adsorbents, an ultrasonic bath was used before the dye solution and nano-adsorbent were placed on the orbital mixer. The use of the ultrasonic bath for over 10 minutes reduces the re...
	Dye removal efficiency ,%. =,,C-0.-,C-f.-,C-0..×100                (1)
	𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ,,𝑚𝑔/𝑔- ..=,(,𝐶-0.−,𝐶-𝑓.)𝑉-𝑀.           (2)
	where C0 = the initial dye solution concentration (mg/L), Cf  = the final solution concentration (mg/L), V = solution volume (L), and M = mass of adsorbents (g) (Baird, 2017).
	It should be mentioned that since the concentration of BB41 solution decreases by 30% without adsorbent addition at high pH values (≥10), the dye removal mechanism does not only depend on the adsorption process.
	Fig. 1. Procedure of preparing sulfonated graphene oxides in the present study (SGO1 and SGO2)
	Table 1. The structure and general properties of BB41
	After adsorption experiments, process isotherm, kinetic, and thermodynamic were studied. Isotherm data were studied by fitting them into various equilibrium models (Ali et al., 2019c; Karimifard & Alavi Moghaddam, 2016a). To analyze the isotherm of BB...
	Kinetic equations are utilized in order to predict and describe the behavior of the adsorbed molecules (per unit time) and/ or the adsorption rate (Tran et al., 2017). Herein, the kinetics of BB41 adsorption onto SGO1 and SGO2 were studied using two k...
	The thermodynamic parameters indicate the spontaneity and feasibility, endothermic or exothermic reaction, and entropy changes during the adsorption process (Jaycock and Parfitt, 1981; Uğurlu, 2009). The thermodynamic parameters of adsorption, like st...
	Due to the economic cost and environmental problems associated with expensive adsorbents, the applicability of any adsorbents depends on their capability of regeneration/ recovery after the adsorption process should be considered (Ali et al., 2019b; K...
	In order to saturate the SGOs for regeneration/ reuse, the SGO1 (0.015 g) and SGO2 (0.02g) were added to the BB41 solution (50 and 100 mg/L) and stirred for 3 hours (Based on pre-tests), respectively. Then, to separate the saturated SGOs from the BB41...
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	It should be noted that qreg (mg/g) and qinitial (mg/g) should be calculated after the regeneration process and at the initial conditions, respectively. (The regeneration cycle is represented by i).
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	3.1. Characterization of SGO1 and SGO2
	The SEM (Fig. 2) and BET tests were used to characterize the morphology and surface structure of the nano-adsorbents, respectively. As shown in the illustrations, the functional groups of the graphene oxide (1,3 propane sultone and 1,4 butane sultone)...
	In addition, according to the BET tests results, the specific surface area of SGO1 (8.43 m2/g) and SGO2 (10.37 m2/g) were reduced compared with that of pristine GO (38 m2/g). The specific surface area decrease of functionalized GO could be due to its ...
	Fig. 3 shows the structural properties of the two nano-adsorbents, including their XRD, FT-IR and Raman spectra. The typical diffraction peaks in the XRD pattern (Fig. 3a) were observed at 2θ= 24.45ᵒ and 43.13ᵒ for SGO1 and 2θ= 24.57ᵒ and 42.91ᵒ for S...
	Fig. 2. SEM images of (a) SGO1 and (b) SGO2
	The connections of the covalent functional groups are indicated by Raman spectra of SGO1 and SGO2 (Fig. 3b). The D band (mainly related to the sp3 defects) and G band (related to the sp2 bonded carbon atoms) are the essential bands of Raman spectrosco...
	SGO2 (0.95) compared with GO (0.9) represents the crystalline growth. Also, according to Cao et al. (2018), the oxygenated functional groups decrease by establishing a covalent bond between the surface of the graphene oxide and the functional groups (...
	Fig. 3. Comparative structural properties of SGO1 and SGO2 (a) XRD patterns;
	(b) Raman spectrum; (c) FT-IR spectra
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	3.2. Effects of important parameters in BB41 adsorption onto SGO1 and SGO2
	3.2.1. Effect of initial pH
	As presented in Fig. 4a, the effect of initial pH on BB41 removal onto SGO1 and SGO2 was assessed in the range of 3 to 9 under the following conditions: Contact time= 60 and 30 minute, adsorbent dose= 0.2 and 0.15 g/L, and initial dye concentration= 5...
	In this competition, not only did the OH− concentration decrease, but also the amount of BB41 adsorbed onto the SGOs increased. Due to the fact that increasing the pH values from 8 to 9 in both nano-adsorbents did not significantly change the dye remo...
	3.2.2. Effect of initial BB41 concentration:
	In the next stage of investigation of BB41 adsorption onto SGO1 and SGO2, the effect of the initial concentration of BB41 was evaluated under the following conditions: Contact time = 60 and 30 min, adsorbent dose = 0.2 and 0.15 g/L, and pH = 8, respec...
	3.2.3. Effect of adsorbent dose
	In this study, the adsorbent dose effect on BB41 adsorption, as one of the important parameters, was evaluated (Fig. 4c). The effects of SGO1 and SGO2 doses, ranging from 0.05 to 0.35 g/L, were investigated for the BB41 adsorption, as follows: Contact...
	3.2.4. Effect of contact time
	Figure 3d illustrates the effect of agitation time on the removal of BB41 using SGO1 and SGO2 with optimum values, resulting from previous stages, as follows: Adsorbent dose= 0.2 and 0.15 g/L, initial dye concentration= 50 and 100 mg/L, and pH= 8 resp...
	3.2.5. Effect of temperature
	Temperature increase leads to growth of the active site and flux of particles in the soluble phase (Liu et al., 2018). The BB41 dye removal capacity in the adsorption process (Fig. 4e) using SGO1 and SGO2 improved as the temperature was increased (10 ...
	Subsequently, the maximum adsorption capacities of several studies evaluating BB41 adsorption were then compared in Table 3. Eventually, the maximum adsorption capacities of BB41 removal using SGO1 and SGO2 were 274 mg/g and 434 mg/g considering the o...
	Fig. 4. The effect of Initial pH (a); Initial dye concentration (b); Adsorbents dose (c); Contact time (d); Temperature (e);
	on the adsorption process of BB41 using SGO1 and SGO2
	Table 3. Comparison of the most considered adsorbents used to remove BB41
	3.3. Adsorption isotherms
	The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm equations and main parameters for BB41 removal using SGO1 and SGO2 are reported in Table 4. The adsorption processes of the two nano-adsorbents follow the Langmuir isotherm with a cor...
	for SGO1 and 0.9965 for SGO2. Based on this compliance with the Langmuir isotherm, adsorption is more likely to occur in single layers and on specific active and homogeneity sites on the adsorbent surfaces.
	It also shows that each active surface contains only one layer and has uniform adsorption energy (Ayawei et al., 2017).
	3.4. Adsorption kinetics
	The corresponding parameters of the pseudo-first-order and pseudo-second-order kinetics are presented in Table 5. BB41 adsorption using SGO1 and SGO2 coincides with the R2 of 0.9995 (SGO1) and 0.9994 (SGO2) on the pseudo-second-order equation, which i...
	Table 4. The fitting parameters of adsorption isotherms for BB41 adsorption by SGO1 and SGO2
	Table 5. The fitting parameters of the general-order kinetic model for BB41 adsorption using SGO1 and SGO2
	3.5. Adsorption thermodynamic
	The linear regression diagrams of the thermodynamic equation are plotted based on Van't Hoff presented in Table 6. Positive values of ΔH and ΔS indicate that BB41removal using SGO1 and SGO2 is endothermic. Consequently, both nano-adsorbents could be e...
	3.6. Regeneration/ Recovery of SGO1 and SGO2
	In this study, SGO1 and SGO2 were regenerated/   reused    (4  cycles)     by     microwave
	irradiation (Table 7). The adsorption capacity (q) decreased on a smooth basis following the subsequent regeneration cycles.
	This downward trend could be attributed mainly to incomplete burning accumulation, which plays the role of   undamaged   waste   material   and changes the structures of the functional groups in the nano-adsorbents, leading to reduction in adsorption ...
	4. Conclusions
	In the present study, two functionalized sulfonated graphene oxide (GO/1,4-butane sultone (SGO1) and GO/1,3-propane sultone (SGO2)) were synthesized, and the success of the covalent functional groups’ connections was confirmed by SEM, BET, XRD, FTIR, ...
	Table 6. The thermodynamic parameters for BB41 adsorption by SGO1 and SGO2
	Table 7. The different regeneration/ recovery periods of SGO1 and SGO2
	The effects of the important parameters in BB41 adsorption onto SGO1 and SGO2 were evaluated with following conditions: pH=8, initial dyeBB41 concentration= 50 and 100 mg/L, adsorbent dose= 0.2 and 0.15 g/L and contact time= 60 and 30 minute at room t...
	The Langmuir isotherm best described the BB41 adsorption onto the two nano-adsorbents (R2=0.997 (SGO1) and R2= 0.996 (SGO2)); the Pseudo-second Order kinetic model (R2=0.9995 (SGO1) and R2=0.9994 (SGO2)), and the thermodynamic study (R2=0.991 (SGO1) a...
	Eventually, the results showed that the SGO2 nano-absorbent demonstrated higher adsorption capacity (434 mg/g) compared with SGO1 (274 mg/g) and it was recovered more efficiently with the selected thermal regeneration method (modified domestic microwa...
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