Environmental Engineering and Management Journal

November 2021, Vol. 20, No. 11, 1739-1744 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

DEGRADATION OF THE PHARMACEUTICAL CAPTOPRIL VIA FENTON PROCESS

Larissa Ribeiro Lima Santos¹, Carolina Paula de Souza Moreira¹, Rangel Caio Quinino Dutra², Olívia Maria de Sousa Ribeiro Vasconcelos¹, Sérgia Maria Magalhães Starling³, Marcos Paulo Gomes Mol^{1*}

¹Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Brazil ²Industrial Department, Ezequiel Dias Foundation, Belo Horizonte, Brazil ³Department of Social Pharmacy, Pharmacy School, Federal University of Minas Gerais, Belo Horizonte, Brazil

Abstract

Emerging contaminants (ECs) can be present at trace levels in different aquatic environments with potential adverse effects for human and environmental health. Alternative wastewater treatments, as advanced oxidative processes, are required to degrade ECs. Thus, the goal of this research was to estimate the degradation rates of the captopril (CAP) utilizing the homogeneous Fenton process in deionized water. The choice of operational conditions were: $[CAP] = 250 \text{ mg L}^{-1}$, pH = 2.8, $[H_2O_2] = 134 \text{ mg L}^{-1}$, $[H_2O_2/Fe^{2+}] = 5:1$, time = 15 min, agitation = 150 rpm, temperature = 294 K. These could achieved 95% of CAP degradation. With these results, it is possible to conclude that the Fenton process is a promising technique for CAP degradation.

Key words: advanced oxidative process, captopril, emerging contaminants, Fenton process

Received: October, 2020; Revised final: March, 2021; Accepted: May, 2021; Published in final edited form: November, 2021

^{*} Author to whom all correspondence should be addressed: e-mail: marcos.mol@funed.mg.gov.br