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Abstract 
 
The goal of this paper is to contribute to environmental improvement. This goal has been achieved by the development of an 
algorithm that allows the optimization of fuel consumption and transport of combustion products. The paper considers the outlier – 
robust recursive algorithm. This algorithm is used for identification of multivariable ARMAX (Autoregressive Moving Average 
with Exogenous Variables) models. In this paper, we introduce pseudo-Huber loss function which is a continuous nonlinear 
approximation of Huber loss function and which has derivatives of all degrees. The structure of the recursive algorithm is: the 
relation for parameter estimation is based on Huber function and the relation for matrix gain is based on pseudo-Huber function. 
The novelty of this work is a new robust algorithm for recursive identification of MIMO ARMAX models. The main contributions 
of the paper are: (i) the new form of the extended least squares algorithm based on mixed Huber and pseudo-Huber functions; (ii) 
approximation of the second derivative of pseudo-Huber loss function and exact determination of matrix gain of the algorithm using 
the Laplace function. A special case of the algorithm, in this paper, is standard linear extended least squares algorithm. The results 
can be extended to an area of adaptive control, prediction, and filtering. They are suitable for practical processes such as thermal 
processes, vibration transport of bulk materials and other processes with multiple input variables. Practical behaviour of robust 
recursive procedure is illustrated by simulations.  
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1. Introduction 
 

The concept of eco-efficiency, in the case of 
thermal power plants is achieved through lower costs 
and efficient use of energy, water and fuel (Grigore et 
al., 2016). It was estimated that coal-fired steam power 
plants, with coal consumption of 40.000 tons/day, can 
transmit 150 tons/hour of SO2 into the environment 
(Bangviwat and Sittikruear, 2018).  

The presence of dust and ash fine particles 
from coal-fired power plants in the working 
environment   causes   cytotoxic  effects  in  employees  

∗ Author to whom all correspondence should be addressed: e-mail: petarmisljen@gmail.com; Phone: +381603712452; Fax: +381112508474 

(Raducanu et al., 2010). Higher efficiency of thermal 
power plants, i.e. the reduction of fuel consumption 
and pollution of the environment is achieved by 
improving control structures in thermal power plants 
(Hu et al., 2018). The emission of pollutant particles 
into the working space decreases by improving the 
transport of combustion products. 

The goal of this paper is to contribute to the 
improvement of the environment. This goal has been 
achieved by the development of an algorithm that 
allows the optimization of fuel consumption and 
transport of combustion products. 
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2. Control of power plants 

 
Thermal power plants and vibratory conveyors 

belong to the class of practical systems which can be 
represented as the MIMO (multiple-input-multiple-
output) systems (Skogestad and Postlethwaite, 2005). 
Control of the traditional thermal power plant can be 
divided into two parts: combustion control and boiler-
turbine control (Fig. 1). There are many variables, in 
traditional power plants, which must be an object of 
observation and control. The steam flow is a variable 
of particular importance. For the power plants optimal 
functionality, it is necessary to produce the required 
quantity and quality of the steam. The measure of the 
steam quantity is its flow rate. The flow rate directly 
determines the power output. Another important 
characteristic for the steam is its quality. The steam 
quality is measured by its temperature and pressure. 
Thus, there are two control objective of a traditional 
thermal power plant. The first is to maintain the steam 
quality, and the second is to meet the steam quantity. 
The steam quality is required by efficiency and safety, 
and the steam quality is required by the power output. 

The master control signal in the boiler-turbine 
control is the steam demand. It is possible to configure 
the boiler control, depending on the power plant 
operation concept. There are several concepts of the 
master control signal behaving: the turbine control 
mode, the pressure control mode and the boiler control 
mode. There are numerous control subsystems in the 
power plants. The control subjects of these subsystems 
are fuel delivery, drum level and steam pressure 
(Zheng et al., 2011). 

Toropov et al. (2019) studied the boiler as a 
separate system consisting of several mutually 
independent subsystems. It is one of many control 
examples where the robust recursive algorithm for 
identification of multivariable ARMAX can be 
applied. A block diagram of a vibrating conveyor with  

an electromagnetic actuator is shown in Fig. 2.  
Vibratory conveyors with an electromagnetic 

actuator are widely used in the process industry. The 
conveyors are used there for the manipulation of bulk 
materials (Misljen et al., 2016). In thermal power 
plants, vibratory conveyors are used for transport of 
the solid fuel combustion products. The task of the 
vibrating conveyor is to carry out the transport of bulk 
material from the hopper to the load cell (Fig. 2). The 
heart of the vibrating conveyor shown in Fig. 2 is an 
electromagnetic vibration actuator (EVA).  

EVA performs the transformation of current 
impulses from the energy converter into the impulses 
of the vibratory trough exciting force (f). Due to the 
vibrations of the trough, the bulk material flows 
through the vibratory trough. The energy converter is 
based on the h-bridge configuration with Insulated 
Gate Bipolar Transistor (IGBT) switches (Despotović 
et al., 2012). Input variables of vibratory conveyors 
are the parameter AP, which represents the measure of 
energy to be transmitted to the actuator, and the 
frequency of the vibratory trough oscillations (fr).The 
central processing unit (CPU) based on the set values 
of the parameter and, based on the reading of the value 
from the EVA current sensor and from the vibration 
sensor, controls the operation of the energy converter. 

In addition to reading the values from these 
sensors, the CPU also reads the values from the load 
cell. Based on the data from the load cell, the CPU 
counts the flow rate of the bulk material at the output 
from the vibratory trough (Q). The maximum material 
flow rate Q is equal to the flow of material from the 
hopper (Q0). The Human Machine Interface (HMI) 
enables the setting and visualization of input variables 
(AP and fr) and visualization of the output variables. 
Depending on the configuration, the output variables 
can be the amplitude of the oscillation of the trough 
(p), the flow Q, the amount of material in the trough 
or the amount of the transported material. 

 
 

 
 

Fig. 1. Control of the traditional thermal power plant 
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Fig. 2. Control of the vibratory conveyor with an electromagnetic actuator 
 

The goal of system identification is to find a 
mathematical equation that gives an approximation to 
the actual behaviour of a real system (Mujahed et al., 
2017). Designing of regulators for the above processes 
requires their mathematical models. A great deal of 
attention is dedicated to the identification of MIMO 
stochastic systems. It is usually assumed that 
distribution of the stochastic disturbance probability is 
exactly known (most frequently it is Gaussian 
distribution). Practical research showed that this 
assumption is not justified (Barnett and Lewis, 1994) 
since in observation populations there are rare large 
observations (outliers).  

The consequence of this fact is that the 
distribution of the stochastic disturbance probability is 
non-Gaussian. That is why a significant effort has 
been invested to design recursive algorithms of 
identification showing minor sensitivity to the 
presence of outliers. In this sense, work published by 
Huber and Ronchetti (2009), which served as a basis 
for the constitution of robust statistics, represent a 
fundamental contribution. Thus, it is possible to 
replace restrictive assumption on exact knowledge of 
the disturbance distribution with the relaxed 
assumption on knowledge of the class of distribution 
to which the respective disturbance belongs.  The last 
assumption is the basis for the robust, in the statistical 
sense, the theory of dynamic systems identification. 

The Huber’s function (first derivative of the 
Huber’s loss function) is not differentiable in point 
(+kƐ) and in point (-kƐ), where kƐ is a Huber’s 
parameter. To overcome the problem, it is introduced 
pseudo - Huber’s loss function. This function has 
behaviour like Huber’s function (Haltey, 2004). In this 
paper, pseudo – Huber’s function is used to obtain a 
relation for matrix gain in a recursive algorithm. In the 
relation for parameter estimate, the Huber’s function 
is retained. To simplify the realization of the 

algorithm, the approximation of the second derivative 
of pseudo - Huber’s loss function is performed. Then, 
matrix gain is exactly determined by using the Laplace 
function. Robust procedures were compared to linear 
algorithms. In the case of outliers' presence, the 
simulation results indicate the superiority of robust 
procedures.  

In order to increase the accuracy of soft 
sensors, new methods are introduced in engineering 
practice. Xiaofeng et al. (2018a, 2019a) presented a 
hybrid variable-wise weighted stacked autoencoder. 
This method can ensure that the learned features 
contain more information for quality prediction and 
overcome the limitations of traditional deep learning 
algorithms. ARMAX is a basic linear model to deal 
with dynamic data relationships.  

They are other techniques that can deal with the 
nonlinear dynamics in data series, like linear dynamic 
systems and long short-term memory network. 
Xiaofeng et al. (2018b) proposed two kinds of weights 
for local linearization of the nonlinear state evolution 
and state emission relationships. Xiaofeng et al. 
(2019b) proposed a supervised long short-term 
memory network to model the dynamic and nonlinear 
behaviours of process sequential data. 
 
3. Case studies 
 
3.1. Process identification 

 
The problem of regulating combustion in boiler 

plants is very important for the environment. The 
description of the combustion process based on 
fundamental physical laws is very complex. That's 
why the black box methodology has been used. In this 
case, the model is obtained using the theory of 
identification and requires only input and output 
measurements. The combustion process has a 
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multivariable character and its block diagram is shown 
in Fig. 3. 

In a boiler, fuel and air are added in a certain 
relationship and there they burn. The quality of 
combustion is measured by the oxygen content of the 
exhaust gas (flue gas). Fig. 3 presents the model of the 
process that is used for the control structure design. 
Below, a mathematical model and its recursive 
identification procedure will be proposed. 

 

COMBUSTION

FUEL

AIR

FLUE GAS AND OXIGEN

DUST AND ASH

 
Fig. 3. Combustion in power plant 

 
3.2. Multivariable ARMAX model 

 
It is supposed that the considered systems 

described by the linear multivariable ARMAX model 
with p-dimensional output and r-dimensional input 
(Eq. 1). 
 

kkk wqCuqByqA )()()( 111 −−− +=  (1) 
 

In Eq. (1), )( 1−qA , )( 1−qB  and )( 1−qC  are 
matrix polynomials, yk is response vector, uk is 
excitation vector and wk is vector of innovations, 
which is an unobservable white noise process with a 
covariance matrix σ (Koulocheris et al., 2005). In 
these polynomials q-1 denotes the shift-back operator, 
so 

1
1

−
− = kk yyq . Orders of polynomials )( 1−qA , 
)( 1−qB  and )( 1−qC  are n, m, and l, respectively. 
In Eqs. (2-4), Ai(i=1,2,…,n) are pxp matrices, 

Bi(i=1,2,…,m) are pxr matrices, Ci(i=1,2,…,l) are pxp 
matrices, and I is identity matrix. The stochastic 
disturbance {wk} is a martingale-difference in relation 
to the non-decreasing family of σ -algebras {Fk}. 
Unknown matrix coefficients are presented in Eq. (5). 
 

n
nqAqAIqA −−− +++= ...)( 1

1
1   (2) 

 
m

mqBqBqB −−− ++= ...)( 1
1

1  (3) 
 

l
lqCqCIqC −−− +++= ...)( 1

1
1  (4) 

 

( ) [ ]lmn
TM CCBBBAAA ,...,,...,,,...,, 12121=θ  (5) 

 
Now the model (Eq. 1) can be written in the form  
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where: 
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Let introduce the matrix 0
kϕ  (Eq. 6). 
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The standard procedure in identification is to 

replace wk with the estimate (ei is the prediction error). 
From that fact it follows Eqs. (7-9). 
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1−−= kkkk ye θϕ

  (9) 
 

Eq. (9) is a key ingredient for the formulation 
of identification criterion. 

Remark 1. Model (1) is a general MIMO 
ARMAX model. The characteristic of the model (1) 
for a stochastic disturbance, due to the presence of 
outliers, has a non - Gaussian distribution. In practical 
situations, the presence of outliers is inevitable 
(Pearson, 2011). In this case, the standard algorithms, 
designed in the case of Gaussian disturbance, may 
have an unacceptably low performance. For this case, 
a robust statistics methodology is applied (Huber and 
Rouchetti, 2009). From this comes the class of robust 
algorithms that are slightly sensitive to the change in 
the distribution of the probability of the disturbance. 

Remark 2. When synthesizing recursive 
algorithms, the most common assumption about the 
nature of a stochastic disturbance is that the 
disturbance has a Gaussian distribution. The problem 
with this selection is described in Remark 1. It is also, 
more rarely, assumed that the disturbance is uniformly 
limited in size without entering the structure of the 
disorder (Bai et al., 1996). 

Remark 3. In this paper, it is assumed that the 
model of the combustion process is linear. In the first 
step, nonlinear processes can be approximated by a 
linear time-invariant model (Euqvist and Ljung, 2005, 
Schoukens and Tiels, 2017). In this way, we can get 
an insight into the behavior of the system. In the next 
step, the process, which is nonlinear, is described by 
the Hammerstein model (nonlinear ARMAX model) 
(Filipovic, 2017) and this is a problem for further 
research. 
 
3.3. Robust recursive algorithm 

 
In the literature, it is usually assumed that the 

probability density of stochastic disturbance is normal. 
Barnett and Lewis (1994) have shown that this 
assumption is not justified, since in observation 
populations   there  are  outliers.  In   that   case,   it   is  
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assumed that the distribution class to which the 
disturbance belongs is known. The distribution (gross 
error model) class presented by Eq. (10) is practically 
important. 
 









+−== symmetricisGGNPPP D ,)1(:1 εεε
 

 (10) 
 

In Eq. (10), )1,0[∈ε  is the contamination 
degree, G is symmetric distribution and ND is a normal 
distribution, where G may be arbitrary distribution 
(Eq. 11). 

 
( ){ }GNPPP D εεε +−== 1:2

 (11) 
 

Very popular contamination model in 
engineering literature, where 2

1iσ  is much less than
( )pii ,...,2,12

2 =σ , is a Tukey`s model (Eq. 12). 
 

( ) ( ) ( ){ }2
2

2
1 ,0,01: iiT NNppp σεσεε +−==  (12) 

 
The model presented by Eq. (12) is given in the 

form of probability densities where ( )2,0 σN  denotes 
a zero-mean Gaussian probability density with a 
variance 2σ . 

General contaminated model is presented by 
Eq. (13). 

 
( ) ( ) ( ) ( ){ }xgNxppp εσεε +−== 2,01:  (13) 

 
In Eq. (13), ( )⋅g  is an arbitrary probability 

density. For Huber’s theory is important restriction 
presented in Eq. (14). 

 
( ) ( ) ( ){ }10,,01: 2 <≤−≥= εσεε Nxppp   (14) 

 
If Hubert’s methodology is applied, the least 

favourable probability density on a class of 
approximately normal distributions is obtained (Eq. 
15). 
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In Eq. (15), the relationship between the 

contamination degree Ɛ and the parameter ikε  of 
Huber’s function is given, for the scalar location 
parameter, by Eq. (16) (Huber and Ronchetti, 2009). 
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1
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Eq. (16) depends on variables Ɛ and ikε . In 
practice, the contamination degree Ɛ is unknown. 
Intensive research has shown that the value of Ɛ moves 
up to 0.2. Because of this, based on simulations, it is 
necessary to find ikε  for which the robust algorithms 
have a minimum estimation error of system 
parameters over the whole range of values of Ɛ. Earlier 
intense simulations show that good performance of 
robust algorithms is provided for [ ]4,2∈ikε

. The best 
performance is accomplished for 3....1 === pkk εε

 
(Filipovic, 2005). 

The components of the vector wk are 
independent. Owing that, the least favourable 
probability density of the vector wk can be presented 
as in Eq. (17). 
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Using Eq. (9) and Eq. (17), it can get 

( ) ( )
ε=

∗−=
w

wpеФ log or explicitly like in Eq. (18). 
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The function ( )⋅Ф  is Huber’s loss function and 

derivative ( ) ( )⋅′=⋅ Фψ  is Huber’s function (Eq. 19). 
 

( )
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e
,
,

ε
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The Huber’s function ( )⋅Ф  is not differentiable 

in point ( )εk+  and in point ( )εk− . Owing to the fact that 
Huber’s loss function ( )⋅Ф  is only first-order 
differentiable, it follows that it is not applicable to 
second-order methods (for example Newton-Raphson 
algorithm or Levenburg-Marquardt algorithm). The 
pseudo-Huber’s function is a smooth version of the 
Huber’s loss function. In that case, the pseudo-
Huber’s function has derivatives of all degrees. 

We will consider next pseudo-Huber’s loss 
function (Eq. 20): 

 

( ) ( )
ε
σπ

εεε −
+





 −+=

1
2ln22 kekkeФp

 (20) 

 
The derivatives of loss function ( )⋅pФ  (first and 

second) are presented in Eqs. (21-22), respectively. 
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The derivatives ( )epψ  (that is pseudo-Huber’s 

function) and ( )epψ ′  are bounded and Lipschitz 
continuous. To simplify the numerical aspect for 
recursive algorithms we introduce an approximation 

( ){ } ( ){ }eEeE pa ψψ ′≅  where ( )eaψ  is defined in Eq. (23). 
 

( )




>
≤

=
ε

εψ
ke
ke

ea ,0
,1  (23) 

 
This approximation has a small influence on 

the behaviour of gain of the recursive algorithm. 
Tsypkin (1984) uses approximation ( )⋅aψ  for the first 
derivative of Huber’s loss function.  

In this paper, a hybrid approach is proposed. 
For calculation of ( )1−∇ kkJ θθ

 we use the Huber’s loss 
function, where Jk refers to Jacobian matrix. The 
calculation of ( )1

2
−∇ kkJ θθ

 is based on the pseudo-
Huber’s loss function and approximation in the form 
of function ( )⋅aψ . Based on this approach, a key part 
of Huber’s theory is preserved (Eq. 39). 

The identification criterion can be defined as in 
Eq. (24). 

 
( ) ( ){ }keФEJ =θ1

 (24) 
 
In Eq. (24) {}⋅E  represents the mathematical 

expectation operator. This criterion generates robust 
(optimal on the class) algorithms.  

The Newton-Raphson algorithm (Eq. 25) can 
be applied for the recursive minimization of the 
criterion, where Eq.(26) is empirical functional. 
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Similarly, as defined by Filipovic (2015) it is 

possible to get Eqs. (27-31). 
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The graphical representations of the Huber’s 

function i-th component ( ( )i
ki eψ ) (nonlinear 

transformation of prediction error) and the 
approximation of the first derivative of pseudo-
Huber’s function ( ( )i

kai eψ ) are presented in Fig. 4. 

Now, the matrix M can be determined based on 
Eqs. (32-33). We have: 
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From Eq. (15) and Eq. (34) it follows Eqs. (35-
36). 
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Eq. (36) is a Laplace function. Dong et al 

(2017) have presented Table of values for which Eq. 
(36) exists. 
 

 
 

Fig. 4. Huber’s function and approximation of the first 
derivative of the pseudo-Huber’s function 

 
Based on the above, matrix M can be presented 

by Eq. (37). 
 

















=

pm

m
M

0

01



 (37) 
 
Let introduce Eq. (38): 

 
( )[ ] 1

1
2 −

−∇= kkk JkP θθ  (38) 
 
From Eq. (25), Eq. (27) and Eq. (38) it follows 

Eqs. (39-41). 
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( ) 0θ,eψPθθ 0k
T
kk1kk =+= −    (39) 

 

[ ] IγP,PMPPPP 0kk
1T

k1kk
T
k1k1kk =+−= −

−−−  

 (40) 
1−−= kkkk ye θϕ   (41) 

 
The relation for matrix gain is presented by Eq. 

(40). In Eq. (40), γ is much greater than 1, the 
dimension of the matrix Pk is 
(np+mr+lp)x(np+mr+lp) and matrix I is the identity 
matrix. The robustness notion is used in statistics, in 
general sense, as insensitivity against small deviation 
from the assumptions. In this paper, it is studied the 
distribution robustness. The algorithm presented by 
Eqs. (39-41), together with the algorithm written by 
Filipovic (2015), in where ARX MIMO systems are 
considered, as far as authors know is novel. 

Remark 4. Implementation of the recursive 
evaluation algorithm (Eqs. 39-41) is based on the 
concept of the most unfavourable density of 
probability (Eq. 15) (min-max principle). The correct 
behaviour of the algorithm for the distribution case 
(Eq. 15) ensures a correct behaviour of the algorithm 
for any distribution of the distribution class (Eq. 10). 

Remark 5. The important role in the algorithm 
(Eqs. 39-41) has the function ψ(). This function 
eliminates the effect of observing the oversized high 
level (outliers). 
 
4. Results and discussion 
 

The robust recursive algorithm for 
identification of multivariable ARMAX systems has 
been considered in previous chapters. The 
effectiveness of that algorithm has been considered on 
the simulation level. We have considered the system 
described by Eqs. (1-4), where: 
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The components of input signals 
 

[ ]T2
k

1
kk uuu =   

 
are shown in Fig. 5. Input signals have the next 
structure: 

• Input 1
ku  is a Gaussian sequence with 

zero mean and variance 1 

• Input 2
ku  is set to be an independent 

sequence of uniform distribution with zero mean and 
variance 1. 

We have considered two different situations. 
A) The stochastic disturbance has Gaussian 

distribution 

It is supposed that both components ( )2
k

1
k w,w  

have same Gaussian distribution N (0,1) (mean is 
equal to zero and variance is equal to 1). The 
disturbance is presented in Fig. 6a. For that type of 
disturbance, the outputs of systems are presented in 
Fig. 7. 

B) The stochastic disturbance has Non-
Gaussian distribution 

We supposed that stochastic disturbance i
kw  has 

a Tukey distribution (Non-Gaussian distribution) 
  
( ) ( ) ( ) 2,1,,0,01 2

2
2
1 =+− iNN ii σεσε ,  

 
where ( )2,σmN  is Gaussian distribution with mean m 
and variance 2σ .  

In simulations, it will be taken 12
1 =iσ , 

1002
2 =iσ , i = 1, 2. The stochastic disturbance is 

presented in Fig. 6b (for contamination degree 
15.0ε = ). In that case, the outputs of the system are 

presented in Fig. 8. 
The comparison of algorithms is carried out for 

contamination degree 15.0ε = . In all cases, it is 
assumed that the parameter of Huber’s function is 

pik i ,...,2,1, =ε
. For such value of ikε

 we have, 
according to Haltey (2004), ( ) 49865.03 =i

LФ . 
The error of estimation is defined by Eq. (42). 
 

θ

θθ
δ

−
= kln

 (42) 
 

In Eq. (42) the vector θ is a vector of true 
parameters and θk is a vector of estimated parameters. 
Comparison between robust and linear algorithms is 
performed for initial value for algorithms  
( IP 4

00 10,0 ==θ ).  
 Fig. 9 presents the behaviour of extended 
least squares (ELS) and robust extended least squares 
(RELS). It is shown that the behaviour of RELS is 
superior in comparison to ELS.  
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5. Conclusions 
 

This paper proposes a recursive algorithm for 
estimation of parameters of multivariable ARMAX 
model based on mixed Huber and pseudo-Huber 
functions. The impact of outliers is reduced by the 
introduction of non-linear prediction error 
transformation depending on a priori information on 
the specific class of distribution to which the relevant 
disturbance belongs.  

Matrix gain depends on the second derivative 
of the pseudo-Huber loss function. Model 
transformation results in unknown parameters being 
reduced to vector form.  

 397 



 
Filipovic et al./Environmental Engineering and Management Journal 19 (2020), 3, 391-399 

 
  

 
Fig. 5. Input signals: a) 1

ku  and b) 2
ku  

 

 
 

Fig. 6. Disturbance: a) Disturbance with Gaussian distribution  
and b) Non-Gaussian disturbance 

 

 
 

Fig. 7. System outputs for Gaussian disturbance: a) 1
ky  and b) 2

ky  
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Fig. 8. System outputs for non-Gaussian disturbance ( 3=ikε ): a) 1
ky  and b) 2

ky  
 

Robust procedures were compared to linear 
algorithms. In the case of outliers' presence, the 
simulation results indicate the superiority of robust 
procedures. Further research is related to the model of 
the process in the Hammerstein form and the unknown 
process parameters in the matrix form.  

 

 
 

Fig. 9. Comparison of extended least squares (ELS) and 
robust extended least squares (RELS) for 15.0=ε  
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