Environmental Engineering and Management Journal

February 2019, Vol.18, No. 2, 275-282 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

EMISSION FACTORS FOR LIGHT-DUTY VEHICLES EQUIPPED WITH THREE-WAY CATALYTIC CONVERTER BASED ON MICRO-REACTOR STUDIES: A PROPOSAL FOR AMMONIA, NITROUS OXIDE AND MOLECULAR HYDROGEN

Gustavo Ariel Fuentes¹, Isaac Schifter², Salvador Castillo², Luz Arcelia García-Serrano³, Isidro Mejia-Centeno^{1,2*}

¹Department of Procees Engineering, Metropolitan A. University-Iztapalapa 09340 México City, México ²Research Direction of Hydrocarbon Conversion, Mexican Institute of Petroleum, 07730 México City, México ³Interdisciplinary Center for Research and Studies on Environment and Development, National Polytechnic Institute, 07340 México City, México

Abstract

In this work, we report a methodology to provide emission factors based on micro-reactor studies. We propose emission factors for ammonia (NH₃, 158 mg/km), nitrous oxide (N₂O, 322 mg/km) and molecular hydrogen (H₂, 72 mg/km) for vehicles equipped with three-way catalytic converter (TWC). Our experimental conditions were similar to those prevailing on vehicles during catalyst light-off and transient urban driving cycle. NH₃ and H₂ emission factors reported in this work are quantitatively similar to those reported from vehicles. However, for N₂O our results are almost 6 times higher than the average reported from vehicles during catalyst light-off. It is possible that the emission factor of N₂O from light-duty vehicles reported during catalyst light-off is underestimated because the time (8.4 min) for recollecting the N₂O emission contained in the exhaust gases is largest than the time (4 min) required to produce the main emission of N₂O on the three way catalyst.

The methodology represents one of the first attempts to predict emission factors from a micro-reactor. Besides, our proposal has the advantage that the main parameters involved in the formation of NH₃, N₂O and H₂ can be controlled. Our method also complements the experimental strategies to estimate emissions, which are difficult to observe during the measurements of these compounds on vehicles.

Keywords: ammonia, emission factors, greenhouse gases, hydrogen, nitrous oxide

Received: December, 2013; Revised final: May, 2015; Accepted: May, 2015; Published in final edited form: February, 2019

^{*}Author to whom all correspondence should be addressed: e-mail: imejia@imp.mx; Phone: +52 5591758170; Fax: +52 5591756000