Environmental Engineering and Management Journal

April 2018, Vol. 17, No. 4, 915-923 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

APPLICATION OF Sphagnum moss PEAT IN ECOLOGICAL REMEDIATION OF OXYANIONS CONTAMINATED AQUEOUS SOLUTIONS

Gabriela Ungureanu¹, Catalin D. Balan², Irina Volf^{2*}

 ¹University of Porto, Faculty of Engineering, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
² "Gheorghe Asachi" Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. docent Dimitrie Mangeron Street, 700050 Iasi, Romania

Abstract

The potential of *Sphagnum* moss peat to adsorb oxyanions (As(III), As(V), Sb(III), Sb(V) and Se(VI)) from aqueous solution was studied in batch mode. For arsenic (both species) and selenium, the results were negative: moss peat is not able to retain these oxyanion. For antimony, the hydroxyl and carboxyl groups from the *Sphagnum* moss peat surface seems to be responsible for Sb uptake. Kinetic studies were conducted for both Sb(III) and Sb(V) and a fast uptake process was observed, equilibrium being achieved in about 2 hours. Equilibrium studies reveals considerable adsorbed amounts of Sb(III) and Sb(V). The experimental sorption capacity resulted for Sb(III) was around 3 mg/g and nearly 3.3 mg/g for Sb(V), at pH 2 and $23 \pm 1^{\circ}$ C. The influence of pH (in the 2-8 range) is modest in case of Sb(III) and insignificant for Sb(V) sorption. Following the results, it is possible to conclude that *Sphagnum* moss peat could be used in ecological remediation of antimony contaminated aqueous solutions.

Key words: oxyanions, remediation, sorption, Sphagnum moss peat

Received: May, 2017; Revised final: February, 2018; Accepted: March, 2018; Published in final edited form: April 2018

^{*} Author to whom all correspondence should be addressed: e-mail: iwolf@tuiasi.ro