Environmental Engineering and Management Journal

December 2018, Vol. 17, No. 12, 2829-2836 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

ENVIRONMENTAL APPLICATION OF Ti/TiO₂ ANODES PREPARED BY DC-MAGNETRON SPUTTERING: DEGRADATION OF ACID ORANGE 7

Susana Sério¹, Luís Carlos Silva¹, Maria Estrela Melo Jorge², Sílvio Ferreira³, Lurdes Ciríaco^{3*}, Maria José Pacheco³, Ana Lopes³

¹CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

²Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal ³FibEnTech-UBI and Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal

Abstract

 Ti/TiO_2 films were prepared by DC reactive magnetron sputtering followed by annealing in air at 400 °C for 4 h. Structural tests have been performed to characterize the films, showing that the prepared films present 70% of anatase phase. When these results are compared with those from TiO₂ films grown on glass substrates with similar deposition parameters, it can be seen that Ti substrates favour the formation of rutile phase, which is not observed on the films supported on glass, indicating that the film structure is strongly influenced by the substrate's nature. The electrocatalytic oxidation of acid orange 7 aqueous solutions, with concentrations between 5 and 50 mg L⁻¹, was performed using Ti/TiO₂ electrodes, at applied current densities of 0.1 and 0.25 mA cm⁻². COD removal increased with applied current density and acid orange 7 initial concentration. The current efficiency also increased with initial concentration, showing that the process was mainly controlled by diffusion.

Key words: acid orange 7, DC-magnetron sputtering, decolourization, electrodegradation, TiO2

Received: January, 2015; Revised final: March, 2015; Accepted: March, 2015; Published in final edited form: December 2018

^{*} Author to whom all correspondence should be addressed: e-mail: lciriaco@ubi.pt; Phone: +351275329259; Fax: +351275319730