

"Gheorghe Asachi" Technical University of Iasi, Romania

HRT EFFECT ON SIMULTANEOUS COD, AMMONIA AND MANGANESE REMOVAL FROM DRINKING WATER TREATMENT SYSTEM USING A BIOLOGICAL AERATED FILTER (BAF)

Hassimi Abu Hasan*, Siti Rozaimah Sheikh Abdullah, Siti Kartom Kamarudin, Noorhisham Tan Kofli

Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Abstract

Three different hydraulic retention times (HRTs) were investigated for NH_4^+ -N and Mn^{2+} removal using an upflow biological aerated system (BAF) as a new approach in drinking water treatment system. Currently in Malaysia, there is no specific treatment for NH_4^+ -N and Mn^{2+} in drinking water treatment plant. BAF is a well known system in biological treatment for wastewater but not for drinking water treatment. This study showed that at 24 hours operation of BAF system, about 91.3% of COD, 94.4% of NH_4^+ -N and 83.4% of Mn^{2+} were efficiently removed. When HRT was decreased to 12 and 6 hours, there was insignificant removal difference in COD and NH_4^+ -N removal. Instead, the Mn^{2+} removal significantly showed an increasing trend (p<0.05) as the HRT was decreased with the removal percentages of 92.1% (12 hours) and 94.8% (6 hours). Real-time monitoring through pH, ORP and DO profiles confirmed that completed simultaneous NH_4^+ -N and Mn^{2+} removal occurred within 6 to 7 hours HRT.

Keywords: BAF system, biofilm, drinking water treatment, HRT, simultaneous ammonia and manganese removal

Received: November, 2012; Revised final: May, 2014; Accepted: May, 2014; Published in final edited form: January 2018

_

^{*} Author to whom all correspondence should be addressed: e-mail: simiabuhasan@gmail.com, hassimi@ukm.edu.my; Phone: +603-89216402; Fax: +60389118345