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Abstract 
 
Several studies have been conducted in various fields comparing Mamdani and Sugeno fuzzy inference systems (FISs). This study 
contributes to the literature by comparing the performance of Mamdani and Sugeno hierarchical fuzzy systems (HFSs) in terms of 
their technical performance within the context of environmental impact assessment (EIA), a multi-criteria decision analysis 
(MCDA) method, with the aim of illuminating practical issues that need to be taken into account during application. The context 
is a non-commercial, research-oriented EIA of a pipeline project in southern Iran. Mamdani and Sugeno HFSs were developed 
with data collected for and expertise gained via a previous formal EIA of the same project. The two developed HFSs were of binary 
structure, reducing complexity while also facilitating sensitivity analysis. A sensitivity analysis was carried out with the full range 
of possible HFS input values. Excluding the final FISs, the FIS outputs did not differ significantly between the two examined HFSs. 
However, the behavior of the Sugeno HFS was found to be more linear than that of its Mamdani counterpart with a higher degree 
of sensitivity to input value changes. This study indicates that the Mamdami HFS is unreliable in some areas due to fluctuations in 
the output surface, which necessitates smoothing before it can be applied.  
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1. Introduction 

 
Environmental impact assessment (EIA) is a 

process of systematic identification and evaluation of 
the potential impacts of projects, programs, or 
legislative actions on the physical, chemical, 
biological, cultural, and socioeconomic constituents of 
the “total environment” (Canter, 1996). It is a multi-
criteria decision analysis method enables various 
alternatives to be evaluated in relation to multifarious 
criteria, such that each alternative is considered in 
relation to criteria weighted on the basis of  decision 
makers’ or stakeholders’ judgments. Ultimately, EIA 
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yields total scores for each alternative that reflect 
decision makers’ preferences alongside the 
alternatives’ performance in relation to the criteria 
(FEI, 2013; Torretta and Capodaglio, 2017). 
According to Rodriguez-Bachiller and Glasson, 
(2004), EIA implementation has been improving, and 
a standardized practice is close to being defined. 
Nevertheless, most EIAs are far from satisfactory and 
new paradigms for EIA are being proposed in the 
literature. Rodriguez-Bachiller and Glasson (2004) 
propose that expert systems be integrated with 
geographical information systems (GISs), whereas 
Shepard (2005) advocates the use of approximate 
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reasoning and fuzzy modeling. Subjective judgment is 
an inextricable component of EIA because it entails 
social and cultural value judgments as well as 
scientific data. Traditional multi-criteria decision-
making methods are insufficient for informing 
decisions because they are not able to model 
qualitative human thinking processes. Conversely, 
fuzzy logic has the capacity to deal with such criteria 
and problems. Fuzzy systems compute numerical 
outputs based on a “qualitative human thinking 
process” that uses words to analyze complex systems 
(Chen et al., 2017; Liu et al., 2006). As a result, fuzzy 
expert systems can help stakeholders understand the 
rationale behind the tangible values computed by an 
EIA (Aly and Vrana, 2007; Pislaru et al., 2010). 
Likewise, these systems can provide a tool that 
stakeholders can use to incorporate their views and 
preferences into the assessment process and observe 
the numerical results of their reasoning. A fuzzy 
expert system is a knowledge-based, quantitative 
expert system that functions using fuzzy sets, 
membership functions, if-then rules, and logical 
operators such as “AND”, “OR”, and “NOT” 
(Horsekotte, 2005; Shepard, 2005). Mamdani and 
Sugeno models are the most commonly employed 
fuzzy expert systems (Zaheeruddin and Jane, 2006). 
The main feature of the Mamdani fuzzy inference 
system (FIS) is the fact that both the antecedents and 
consequents of its rules are fuzzy. Building this type 
of model requires four steps: fuzzification, 
implication, aggregation, and defuzzification 
(Mathworks Inc., 2006).  

The Sugeno system (a.k.a. TSK based on its 
originators Takagi, Sugeno and Kang) is similar to the 
Mamdani system in the fuzzification step and its use 
of fuzzy operators. However, it is distinguished by the 
feature of having output membership functions that 
are not fuzzy. The Sugeno system can employ a linear 
(first-order) output membership function or a constant 
(zero-order) membership function (Mathworks Inc., 
2006; Zaheeruddin and Jane, 2006), and its final 
output is computed through the weighted average 
method with the outputs of fired rules (Mathworks 
Inc., 2006).  

In standard fuzzy systems, the number of rules 
and parameters increases exponentially in relation to 
the number of input variables. This so-called curse of 
dimensionality damages the transparency of systems 
since humans are unable to understand and justify 
“hundreds or thousands of fuzzy rules and parameters” 
(Wang et al., 2006). This problem has been addressed 
by hierarchical fuzzy systems (HFSs), which preclude 
a large number of expert rules, prevent the expansion 
of knowledge into a colossal system, and support the 
organization of inter-input variable relationships into 
a logical structure. Hierarchical systems accomplish 
this restraint by combining or aggregating several 
smaller fuzzy expert systems into the computation of 
the final result.  

In this context, combination means that the 
outputs of logically-related fuzzy expert systems are 
integrated into a single output using logical rules, 

whereas aggregation means that the outputs of 
independent fuzzy expert systems are accumulated as 
necessary for computing the final output of the entire 
system (Aly and Vrana, 2007). 

The purpose of the present work is to compare 
the technical performance of Mamdani and Sugeno 
HFSs in the realm of EIA from a multi-criteria 
decision analysis perspective with the aim of 
highlighting some crucial aspects of utilizing the 
developed models. These HFS models have probable 
applications in future studies of similar situations. The 
present study is not a real EIA and does not analyze 
and compare any actual alternatives, which would be 
beyond the capacity of this paper. Rather, it scrutinizes 
the way both systems can behave in supporting 
environmental decisions.  

Two EIA case studies utilizing HFSs are 
summarized herein. These studies laid the foundation 
upon which the current study builds and to which this 
work adds new features and provides new practical 
insights. This study utilizes a simplified structure 
relative to the mentioned studies via developing binary 
HFSs. In section 2, a brief discussion of some case 
studies comparing Mamdani and Sugeno inference 
systems is presented, mainly from the engineering 
modeling perspective. These case studies provided the 
impetus for the present study to investigate a different 
facet of such comparisons to illuminate some practical 
aspects of the systems.  
 
2. Case studies 
 

Some case studies of EIA schemes have made 
use of HFSs as decision support tools. As a case in 
point, Siqueira Campos Boclin and Mello, (2006) 
developed an EIA fuzzy decision support system for a 
highway project in Brazil. They examined four 
alternative development scenarios, including the “pre-
existing situation” and “no action”. They created a 
decision tree which integrates the outputs of fuzzy 
sub-systems to compute the total environmental 
situation. All of the subsystems were of the Mamdani 
type and all of the variables in the model were 
standardized to the universe of discourse [0, 1]. The 
membership functions pertaining to the linguistic 
terms “good”, “bad”, and “critical” were S-shaped. 
The defuzzification method was the center of gravity, 
which generated output values within an interval 
smaller than in their study [0, 1]; put differently, the 
final outputs were in the range [0.158, 0.842]. 
Therefore, the authors added a final normalization step 
to each subsystem, as well as to the final output, to 
rescale the outputs at each step to the interval [0, 1]. In 
this example, the final outputs were converted by 
subtracting the lower endpoint of the interval (0.158) 
and dividing the result by the length of the interval. 

Likewise, Liu et al., (2009) developed a fuzzy 
decision support system for an EIA of a Taiwanese 
high-speed rail project. They divided the project line 
into three segments and analyzed three different 
scenarios for each of the segments. They created a 
hierarchy of Mamdani fuzzy expert systems to assess 
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the impact on environmental criteria and subcriteria. 
Their model was developed using the Matlab Fuzzy 
Logic Toolbox. The computed output of each fuzzy 
expert system was the significance of the associated 
environmental impact. The universe of discourse 
relating to all output variables was the interval [0, 
100]. Triangular fuzzy membership functions were 
used for the output variables, with linguistic 
interpretations ranging from “very insignificant” to 
“very significant”. The defuzzification method was 
the center of gravity. The authors reported that the real 
output range was narrower than the interval [0, 100]. 
As with the Boclin and Mello (2006) study, Lui et al., 
(2009) rescaled all intermediate and final outputs so 
that their lower and upper bounds corresponded to 0.0 
and 100, respectively.  

It should be mentioned that each higher-ranked 
system of the hierarchy consisted of two to five sub-
systems in both of these models. Studies comparing 
Mamdani and Sugeno FISs have been carried out in 
fields other than EIA. For example, Jassbi et al., 
(2006) compared the performance of Mamdani and 
Sugeno FISs in detecting generic system faults of the 
ENVISAT satellite gyroscope. Both FISs were 
developed to trigger an alarm. The authors observed 
that, of the two, the Sugeno FIS was much faster, 
requiring 14 times less processing time. The Sugeno 
FIS was more robust than its Mamdani counterpart 
when interpreting noisy data; however, it was also 
more sensitive to very high noise levels. On this basis, 
the authors concluded that the Sugeno FIS behaved 
more realistically than did the Mamdani FIS. 
Ultimately, they reported that transitions between 
states were smoother in the Sugeno FIS and that the 
Sugeno FIS was more sensitive to imprecision where 
the input fuzzy sets overlapped. Guney and Sarikaya 
(2009) compared Mamdani and Sugeno FISs for 
resonant frequency calculation of rectangular 
microstrip antennas. The designed parameters of both 
FISs were adjusted using various training algorithms. 
The absolute errors between the measured resonant 
frequencies and the frequencies calculated by the FISs 
were small. However, the best performance was 
achieved by the Sugeno FIS trained by the least 
squares algorithm. Özger (2009) compared Mamdani 
and Sugeno FISs developed to predict stream flow of 
the Euphrates River in Turkey. Both FISs were trained 
on the basis of experimental data. The parameters of 
the Mamdani FIS were adjusted using a genetic 
algorithm, while the Sugeno FIS was trained using 
artificial neural networks (ANNs).  

In this case, the Mamdani FIS outperformed its 
Sugeno counterpart in terms of accuracy. However, 
the performances of both FISs were surpassed by that 
of a conventional model. Kaur and Kaur (2012) 
compared Mamdani and Sugeno FISs for the operation 
of an air conditioning system. In both systems, the 
input variables were temperature and humidity, and 
the single output variable was compressor speed. 
Despite the fact that both systems operated similarly, 
the air conditioning system worked at full capacity  

 

only when using the Sugeno FIS. 
 
3. Material and methods 
 
3.1. Background 
 

This study is a research-oriented, non-
commercial EIA based on the data and expertise 
utilized in a formal EIA study of the South Pars gas 
pipeline project, Phases 15 and 16. The project area 
extends from landfall in the vicinity of the coastal 
village of Assaluyeh to the zone of the platforms of 
South Pars Deck 15 (Phase 15) and South Pars Deck 
16 (Phase 16), approximately 100 km off the southern 
Iranian coast in the Persian Gulf. The landfall area 
defined in the program stretches from Kilometer Point 
(KP) 0.0 to KP 4.7. From KP 4.04 to KP 15.46, the 
desired pipelines pass through Nayband national 
Marine Park (Pouyandegan Mohit Zist, 2011). 
Nayband National Marine Park is one of the most 
valuable habitats of the Persian Gulf, sheltering coral 
reefs and marine tortoises.  

A prior formal EIA of this project was carried 
out with a Leopold Matrix (Canter, 1996) with the aim 
of assessing the environmental impact associated with 
“action” and “no action” alternatives. The area 
targeted by the EIA was a 5-km–wide pathway (2.5 
km on either side of the pipeline) running through the 
coastal regions and sea bed (Pouyandegan Mohit Zist, 
2011).  
 
3.2. Hierarchical fuzzy systems 
 

In this study, we have developed two HFSs 
using the same data and expertise that were involved 
in creating the formal EIA. Our HFSs have been 
developed with the cooperation of PMZ Company’s 
experts through brainstorming sessions, using their 
professional knowledge and the data that were 
collected for the formal EIA. The conceptual models 
(Fig. 1 and Fig. 2), fuzzy membership functions (Fig. 
3), and all the rule bases (Table 1), are the resultant 
outputs of such sessions. The present study does not 
entail public participation or stakeholder views and 
lies outside the scope of a formal EIA scheme.  

We compare the results obtained with a 
Mamdani FIS-based HFS and a Sugeno FIS-based 
HFS with identical structures. The input variables are 
all environmental factors scrutinized in the original 
EIA. The HFSs are binary systems in which every 
upper rank FIS consists of two sub-systems, thereby 
reducing the complexity of the hierarchy and 
facilitating sensitivity analysis. 
 
3.2.1. Mamdani HFS 

The Mamdani HFS (developed with the Matlab 
R2006b Fuzzy Logic Toolbox) involves the same 
membership functions for each fuzzy sub-system. All 
input and output variables are rated in the overlapping 
fuzzy categories “Poor”, “Mediocre”, and “Good”, 
reflecting the performance quality of the project for 
that environmental criterion.  
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Fig. 1. The conceptual model associated with the Biophysical Index (FL – Fuzzy logic) 
 

Table 1. Fuzzy rules used to calculate the Sea-Bed, Biophysical and Total indices 
 

Rule no. If Then 
Input1a is And Input 2b is Sea-Bed is Biophysical is Total is 

1 Poor Poor Poor Poor Poor 
2 Poor Mediocre Poor Poor Poor 
3 Poor Good Mediocre Mediocre Poor 
4 Mediocre Poor Mediocre Poor Poor 
5 Mediocre Mediocre Mediocre Mediocre Mediocre 
6 Mediocre Good Mediocre Good Good 
7 Good Poor Mediocre Mediocre Poor 
8 Good Mediocre Good Good Mediocre 
9 Good Good Good Good Good 

a: Sea-Bed Sediment for the Sea-Bed Index, Physical for the Biophysical Index, and Biophysical for the Total Index; b: Sea-Bed Morphology for 
the Sea-Bed Index, Biological for the Biophysical Index, and Socio-Economic and Cultural for the Total Index. 
 

The Mamdani and Sugeno HFSs compute 
project performance indices relating to the 
environmental components within the interval [0, 1]. 
The individual indices are integrated in a hierarchical 

manner to compute the total performance of the 
project in the order shown in Fig. 1 and 2, respectively. 
The conceptual models through which the Biophysical 
and the Total Indices are computed are presented in 
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Fig. 1. Table 1 shows the rules associated with the Sea-
Bed, Biophysical, and Total FISs that typify FISs 
throughout the hierarchy. The conceptual models 
through which the Biophysical and the Total Indices  

 

are computed are presented in Fig. 2, respectively.  
The shapes of the corresponding membership 

functions are triangular (Fig. 3), and the universe of 
discourse for all variables is [0, 1]. 
 

 
 
 

Fig. 2. The conceptual model associated with the Total Index (FL: Fuzzy logic) 
 
 

 
 

Fig. 3. Fuzzy membership functions 
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It has to be mentioned that the Sea-Bed and 
Biophysical FISs represent all FISs, except for the 
Total FIS, which is a unique FIS throughout the 
hierarchy. For this study, we use the Centroid 
defuzzification method. The “AND”, implication, and 
aggregation methods are Minimum, Minimum, and 
Maximum, respectively. 
 
3.2.2. Sugeno HFS 

All the same input variables, input membership 
functions, and rule bases used for the Mamdani HFSs 
are used for the Sugeno HFS (developed with the 
Matlab R2006b Fuzzy Logic Toolbox), in the systems 
developed for the purpose of this study. In a zero order 
Sugeno system, the output functions are constants. 
Here, the “Poor”, “Mediocre” and “Good” categories 
are mapped onto the constants 0.01, 0.5 and 1.0. The 
selected “AND” method is the Product method. 
 
3.3. Data generation 
 

To generate data, 41 input values ranging from 
0.0 to 1.0, with an increment of 0.025, are generated 
for each input variable. Then, the generated values of 
both variables are paired in a 41×41 matrix. 
Eventually, all input pairs generated in this fashion are 
administered to all FISs of the developed Mamdani 
and Sugeno HFSs. It is important to mention that, for 
our purposes, the diagonal simulation means that the 
corresponding pairs of input values are utilized to 
generate output values.  

Hence, the values of both input variables 
increase with a 0.025 increment. The row-oriented 
simulation means that 41 unique values for the first 
input variable are paired with the 41 unique values of 
the second input variable in an incremental fashion. 
Likewise, the column-oriented simulation means that 
there are 41 unique values for the second input 
variable, each of them paired with the 41 unique 
values of the first input variable in an incremental 
fashion. 
 
3.4. Data analysis 
 

Data analysis is carried out using sensitivity 
curves, the non-parametric two-related sample 
Wilcoxon test (Siegel and Castellan, 1998; Statsoft 
Inc., 2013), linear regression, and by characterizing 
the variations between adjacent output values. 
Sensitivity curves are used to observe the general 
behavior of both HFSs, especially in terms of 
operating at full capacity. Furthermore, the sensitivity 
curves are utilized to compare the reliability of HFSs 
over the full range of possible inputs.  

The outputs of the Mamdani FISs are adjusted 
using the method adopted by Siqueira Campos Boclin 
and Mello (2006). In the next step, the outputs of the 
Sugeno FISs are compared with both original and 
adjusted outputs of the developed Mamdani FISs. The 
Wilcoxon test is used to detect any significant 

statistical differences between the outputs of both 
HFSs.  

Linear regression analysis is used to test the 
linearity of the output function with respect to its input 
variables. An HFS with linear behavior is equally 
sensitive to all inputs, producing a balanced scale for 
comparison. The variation between each pair of 
adjacent output values is calculated as follows (Eq. 1): 
 

,iii 1NN −−=∆  (1) 
 

where i is the output value and N is the output number 
 
4. Results and discussion 
 

The results of diagonal simulation on the Sea-
Bed, Biophysical, and Total FISs are shown in Fig. 4. 
The shapes of these curves are typical of all sub-
systems in the hierarchy.  
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Fig. 4. Results of applying diagonal simulation to the: (a) 
Sea-Bed FIS; (b) Biophysical FIS and (c) Total FIS. 
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The Mamdani FISs fail to operate at full 

capacity, meaning that their output range is narrower 
than the input range [0, 1], as reported by other authors 
(Kaur and Kaur, 2012; Liu et al., 2009; Siqueira 
Campos Boclin and Mello, 2006). To put it in another 
way, the Mamdani’s output range is [0.163, 0.837], 
indicating the fact that the system is biased toward the 
end of the interval. This means that the degree of bias 
(overestimation or underestimation) increases as the 
inputs move farther from the midpoint. This 
phenomenon is especially pronounced in comparison 
with the Sugeno FISs. On the other hand, the Sugeno 
system operates without any bias toward the endpoints 
of the interval. Hence, further adjustments have to be 
made to the Mamdani outputs here, similar to the 
method adopted by Siqueira Campos Boclin and 
Mello (2006). 

The results of the non-parametric two-related 
sample Wilcoxon test (Table 2) demonstrate that for 
the Sea-Bed and Biophysical FISs, there are no 
statistically significant differences between the output 
values of the Mamdani (with original or adjusted 
output values) and Sugeno HFSs (|Z|< Z0.975= 1.96; P 
> 0.05; PMontecarlo > 0.05). On the other hand, for Total 
FIS, there are significant statistical differences 
between the output values of the Mamdani (both with 
original and adjusted output values) and Sugeno HFSs 
(|Z| > Z0.975 = 1.96; P < 0.05; PMontecarlo < 0.05). This 
means that, excepting the Total Index results, both 
HFSs perform similarly in terms of evaluating the 
performance of decision alternatives with respect to 
each decision criterion or index. However, with regard 
to the Total Index, the two HFSs function significantly 

differently in terms of evaluating the aggregate 
performance of decision alternatives. Hence, the 
comparison among the final outputs of the decision 
alternatives will have a different meaning for each 
HFS in statistical terms.  

Linear regression analysis (Table 3) 
demonstrates that both the Mamdani (with original or 
adjusted output values) and Sugeno HFSs are linear at 
a confidence level of 99% (P < 0.01, F > F0.99 (2, 1678) 
= 4.618), indicating that the transitions between output 
values are fairly constant and continuous in both 
HFSs. In other words, both systems provide a stable 
measure for drawing comparisons between decision 
alternatives. Nevertheless, the F and R2 values 
associated with the Sugeno HFS are greater than those 
belonging to the Mamdani HFS, with the original and 
adjusted output values, indicating that the Sugeno 
HFS produces more linear behavior, with a higher 
percentage of points landing on the regression line. 
Consequently, the Sugeno HFS produces a more 
balanced scale for comparison. 

In addition, the input variables’ coefficients for 
the Sugeno system are greater than those for its 
Mamdani counterpart. Therefore, any change in the 
input values will bring about more changes in the 
output values of the Sugeno system. Hence, besides 
providing a more balanced scale for comparison, the 
Sugeno system provides a more sensitive scale for 
differentiating between decision alternatives, in terms 
of both decision criteria and aggregate performance. 

The percentages of negative variation (Eq. 1) 
for the original and adjusted versions of the Mamdani 
HFS are identical. 

 
Table 2. Non-parametric two-related samples Wilcoxon test comparing Mamdani and Sugeno FIS outputs 

 
Compared systems FISa Zb Pc Pd Montecarlo 

Sugeno and Mamdani 
Sea-Bed -0.698 0.485 0.482 

Biophysical -0.773 0.440 0.437 
Total -16.330 0.000 0.000 

Sugeno and Adjusted Mamdanie 
Sea-Bed -0.874 0.382 0.379 

Biophysical -0.876 0.387 0.392 
Total -15.380 0.000 0.000 

a: Fuzzy inference system; b: Measure of the test; c: Asymptotic statistical P value (2-tailed); d: Montecarlo statistical P value (2-tailed) “based 
on 10000 sampled tables; e: With adjusted output values 
 

Table 3. Linear regression analysis results 
 

a: Hierarchical fuzzy system; b: Fuzzy Inference System; c: Sea-Bed Sediment for the Sea-Bed FIS, Physical for the Biophysical FIS, and 
Biophysical for the Total FIS; d: Sea-Bed Morphology for the Sea-Bed FIS, Biological for the Biophysical FIS, and Socio-Economic and Cultural 
for the Total FIS; e: Fisher Test Critical Value; f: Statistical P value; g: With original output values; h: With adjusted output values 
 
 

HFSa FISb Coefficients R2 Fe Pf 
Input1c Input2d Constant 

Original Mamdani g 
Sea-Bed 0.305 0.103 0.296 0.788 3.118exp3 <0.01 

Biophysical 0.311 0.311 0.189 0.874 5.831exp3 <0.01 
Total 0.216 0.319 0.184 0.682 1.802exp3 <0.01 

Adjusted Mamdanih 
Sea-Bed 0.453 0.153 0.197 0.788 3.118exp3 <0.01 

Biophysical 0.462 0.462 0.038 0.874 5.831exp3 <0.01 
Total 0.320 0.474 0.030 0.682 1.802exp3 <0.01 

Sugeno 
Sea-Bed 0.736 0.254 0.007 0.934 1.184exp4 <0.01 

Biophysical 0.736 0.736 -0.233 0.962 2.118exp4 <0.01 
Total 0.493 0.736 -0.238 0.824 3.920exp3 <0.01 
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Negative variations are symptomatic of 
fluctuations in the output surface. On the contrary, this 
phenomenon is not observed with the Sugeno FISs. 
Rather, in the corresponding areas of the Sugeno HFS, 
the slope of change decreases (Fig. 5) or remains 
constant (Fig. 6). Notice in Table 4 that, in most cases, 
negative variations happen where the constant 
variable values are within the extreme ranges of [0.0, 
0.25] and [0.75, 1]. Moreover, it can be inferred that 
when an input variable with a higher coefficient is held 
constant (Table 3), the variation of the other variable’s 
values spreads the mentioned error into other constant 
variable value ranges, with the central value being 
maintained (i.e. 0.5). 

When the first input variable (i.e. Physical 
Index) is held constant at 0.85 and paired with all 
values related to the second input variable (i.e. 
Biological Index) ranging from 0 to 1 with an 
increment of 0.025 (Fig. 5), the slope of variation for 
the Sugeno FIS increases from point 21 onward. On 
the other hand, the output values for the Mamdani FIS 
(original and adjusted output values) are constant from 
point 21 to 27, followed by conspicuous fluctuating 
pattern in the curve associated with the output values.  

When the second input variable (i.e. Socio-
Economic and Cultural Index) is held constant at 
0.950 and paired with all values of the first input 
variable (i.e. Biophysical Index), ranging from 0 to 1 
with an increment of 0.025, the Sugeno output values 
increase at a constant rate of 0.047 between points 1 
and 21 and then level out (Fig. 6 and Table 5). On the 
other hand, in the Mamdani FIS, with both original 
and adjusted output values, the output values increase 
at a varying rate between points 1 and 21 and fluctuate 

thereafter between two identical values. These 
findings provide a practical explanation for the linear 
regression results (Table 3) while underscoring the 
fact that the Sugeno system provides a more balanced 
scale for comparison than its Mamdani counterpart. 
Between points 1 and 21, the outputs of the Sugeno 
system react more sensitively to changes in the input 
variable values (Table 5). This phenomenon provides 
another practical explanation for the linear regression 
results (Table 3), demonstrating that the Sugeno 
system provides a more sensitive scale for comparison 
than its Mamdani counterpart. 

From the data shown in Fig. 6 and Table 5, it 
can be inferred that in the fluctuating areas between 
points 21 and 41, the Mamdani system fails to live up 
to the expectation that when one input variable is held 
constant, the response to increases in the other input 
should be monotonic. In other words, this 
phenomenon is construed as pseudo-sensitivity and 
may distort differentiation between alternatives in 
terms of decision criteria or aggregate performance. 
For example, assume that we have two schemes 
respectively named alternative 1 and 2 with an 
identical Socio-Economic and Cultural input value of 
0.95 using the Mamdani Total FIS with the original 
output values for computation. The biophysical scores 
of the two alternatives are 0.650 and 0.675, 
respectively. According to the rule base (Table 1), one 
could expect logically that alternative 2 would match 
or surpass the Total Index score of alternative 1. 
However, the computed Total scores associated with 
alternative 1 and 2 are 0.73 and 0.72, respectively, 
defying logic. 

 
Table 4. Percentage of negative variation cases related to Mamdani FISs 

 
Simulation 

type FISa Constant variable values 
[0.0, 0.25] [0.275, 0.475] 0.5 [0.525, 0.725] [0.750, 1.0] 

Row-Oriented 
b 

Sea-Bed 12.5% 21.1% 0.0% 21.1% 12.5% 
Biophysical 12.5% 0.0% 0.0% 0.0% 12.5% 

Total 35.2% 0.0% 0.0% 0.0% 0.0% 

Column-
Oriented c 

Sea-bed 8.6% 0.0% 0.0% 0.0% 8.6% 
Biophysical 12.5% 0.0% 0.0% 0.0% 12.5% 

Total 25.0% 10.6% 0.0% 10.6% 12.5% 
a: Fuzzy inference system; b: Each unique value of the first variable, the constant variable, is paired with all unique values of the second variable; 

first input variables are Sea-Bed Sediment for the Sea-Bed FIS, Physical for the Biophysical FIS, and Biophysical for the Total FIS; c: Each unique 
value of the second variable, the constant variable, is paired with all unique values of the first variable; second input  variables are Sea-Bed 
Morphology for the Sea-Bed FIS, Biological for the Biophysical FIS, and Socio-Economic and Cultural for the Total FIS 
 

Table 5. Variation values associated with results shown in Fig. 6 
 

Type of fuzzy inference system 
Input pair range 

1−21 21−41 
Mina Maxb Mean Min Max Mean 

Original Mamdanic 0.0022 0.0542 0.0289 -0.0089 0.0089 0 
Adjusted Mamdanid 0.0033 0.0805 0.0428 -0.0132 0.0132 0 

Sugeno 0.0470 0.0470 0.0470 0 0 0 
a: Minimum; b: Maximum; c: With original output values; d: With adjusted output values 
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Fig. 5. Results for one row of row-oriented simulation for the Mamdani and Sugeno Biophysical FISs 
 

 
 

Fig. 6. One column of the column-oriented simulation results for the Mamdani and Sugeno Total FISs 
 

In contrast, the Sugeno HFS is reliable over the 
entire curve. When using the Mamdani HFS, it is 
necessary to take into account such areas of 
fluctuation so as to prevent any misinterpretation. One 
way to tackle such problems is to use smoothing 
techniques. For example, the fluctuated area of the 
total Mamdani FIS can be smoothed into a shape 
similar to the corresponding area of the Sugeno Total 
FIS by applying the linear interpolation method (Fig. 
6). 
 
5. Conclusions 
 

This study compares Mamdani and Sugeno 
HFSs in the context of a non-commercial research-
oriented EIA case study of a pipeline project in 
southern Iran from a multi-criteria decision analysis 
perspective. The developed HFSs are binary systems 
that reduce complexity and facilitate sensitivity 
analysis. The study aim is to provide insight into 
practical aspects of the developed systems through 
their comparison and thereby produce results that are 

useful to consider during application. The developed 
systems have the potential to be expanded, revised, 
validated, and utilized in other EIA studies of similar 
projects in the region. 
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