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Abstract 
 
The changing characteristics of vegetation carbon patterns in the karst region of northwest Guangxi, China and their impact factors 
were analyzed on the basis of vegetation inventory data from 2005 to 2010. A radial basis function network model (RBFN) was 
constructed using data from 1377 samples and 13 environmental factors. The results for the 5-year study period were as follows: 
(1) The total carbon storage of vegetation had increased with an annual growth rate of 1.84% and the carbon density of vegetation 
increased from 29.04 t hm-2 to 29.57 t hm-2. The carbon density in the west (>40 t hm-2) was greater than that in the Middle East 
(<25 t hm-2). Hot spot analysis revealed a random distribution of vegetation carbon density in 2005, but a highly aggregated 
distribution in 2010. (2) The four most important impact factors on spatial distribution of vegetation carbon density in this area 
were land type, forest type, forest category, and vegetation type (significance <50%). The least important factors were location, 
slope, aspect, and elevation (significance of 2–11%). Vegetation carbon density increased significantly with the implementation of 
rocky desertification control measures. Factors changed by human activities had much greater impacts than topographic factors on 
the spatial distribution of vegetation carbon density. Therefore, the Ecological Immigration Program, returning farmland to forests, 
and rocky desertification control measures had an important effect on the pattern of vegetation carbon density. 
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1. Introduction 

 
Estimation of vegetation carbon is one of the 

key steps in examining greenhouse gas CO2 exchange 
between terrestrial ecosystems and the atmosphere 
(Dixon et al., 1994; Piao et al., 2009). Karst ecological 
systems are an important component of the terrestrial 
ecosystem (Cao et al., 2005) and the CO2-H2O-CaCO3 
system with biological and chemical active processes. 
Thus, karst systems play an important role in the 
global carbon cycle. There is relatively little carbon 
stored in karst soil because it is shallow and 
discontinuous. Consequently, the ratio of vegetation 
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carbon to soil carbon is much higher in karst 
ecosystems than in other types of ecosystems (Cai et 
al., 2012). China has invested more than CNY 5 
billion in rocky desertification control, and had 
implemented the following programs, beginning in the 
1990's: the National Poverty Alleviation Plan, the 
Western Development Strategy, the Green for Grain 
Program, the Mountain Closure Program (to facilitate 
afforestation), and the Ecological Immigration 
Program. The focus of the Ecological Immigration 
Program was to help farmers in karst areas to move to 
non-karst areas where ecosystem conditions were 
deemed to be considerably better. During this 
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campaign, 49,133 families (232,705 persons) were 
relocated in northwest Guangxi, China. The total area 
of the Green for Grain Program was up to 1,278.67 
km2 in Baise during 2001–2004 (Zhang et al., 2011). 
This included 605.33 km2 of farmland that was 
restored to woodland and 673.33 km2 of reforestation 
activities of barren hills. For example, in Duan 
County, the land area of rocky desertification had been 
reduced to 333,356.9 hm2, and 45,333.33 hm2 of land 
were converted from farmland to forest as part of the 
Green for Grain program by 2009. The comprehensive 
treatment of rocky desertification was expected to 
have caused changes in the vegetation carbon pattern. 
Impact factor analysis could be used to evaluate the 
treatment of rocky desertification.  

Vegetation carbon in the karst area has been 
studied by many researchers (Liu et al., 2008; Wang 
et al., 2012; Ye et al., 2010; Luo et al., 2010; Tian, et 
al., 2011). However, most of the studies focused on 
the micro or local ecological system scale. 
Investigation of the spatial pattern of vegetation 
carbon is needed at regional scale. Furthermore, 
factors that affect the formation of vegetation carbon 
spatial patterns have been scarcely studied. 
Investigation of the changes in vegetation carbon 
patterns in a typical karst area, and further analysis of 
the main impact factors can provide a scientific 
reference for the evaluation of karst rocky 
desertification control and basic data for 
understanding the driving mechanisms of carbon 

characteristics in karst regions. This will permit an 
accurate estimation of the carbon storage in karst 
regions. We used forest resources inventory data 
collected in 2005 and 2010 to study vegetation carbon 
density in a typical karst area in northwestern 
Guangxi, China. In addition, a radial basis function 
network (RBFN) model was applied to test the 
influence of environmental factors on carbon spatial 
distribution. 

 
2. Study area and methods 
 
2.1. Study area 

 
The study area was located in northwest 

Guangxi, China (104°29´–109°09´E, 23°41´–
25°37´N) (Fig. 1), which includes 23 counties 
covering an area of 69,400 km2 and sustaining a 
population of 7.97 million people. The region has a 
subtropical wet monsoon climate with an annual 
temperature 19.5°C and an annual precipitation of 
1,000–1,600 mm. The elevation in this hilly region 
ranges from 100 m to 2,000 m above sea level and the 
dominant vegetation communities are mixed 
subtropical evergreen and deciduous forests. The 
landforms in this region are typical karst landforms, 
including poljes, cockpits, towers, and dolines. The 
region supports a mountainous agricultural region in 
which the cropland areas are generally not very fertile. 
 

 

 
Fig. 1. Location and land cover of the study area 
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2.2. Data acquisition and preprocessing 

 
2.2.1. Data sources and software 

The main data used consisted of 2005 and 2010 
forest inventory data from the Central South China 
Forestry Survey and Design Institute (a design 
qualification survey, planning, and design institute 
that is part of the State Forestry Administration, 
China). The data was obtained using systematic, fixed 
sampling of 25.82 × 25.82 m (0.0667 ha) sampling 
plots. More than 60 variables were measured at each 
sampling location, including altitude, slope position, 
slope, vegetation type, forest type, land type, 
vegetation coverage, soil thickness, humus, rocky 
desertification. ArcGIS 9.3 (Environment Systems 
Research Institute) was used to prepare data and for 
spatial analysis. Weather and radiation datasets were 
interpolated (i.e., Kriging) in ARCGIS 9.3. All data 
were projected or re-projected to an Albers Conical 
Equal Area, Krasovsky Spheroid projection and then 
re-sampled to a 100 × 100-m pixel spacing. 

 
2.2.2. Biomass and vegetation carbon 

We used biomass expansion factors (BEFs) to 
estimate the total biomass in the study area from the 
forest inventory data. BEFs are comprehensive 
reflections of habitat, climate, age, and other factors 
that influence vegetation (Jiao et al., 2005). BEFs are 
generally based on regression equations. We used the 
following equation to calculate BEF (fBEF) (Jiao et al., 
2005) (Eq. 1): 

 
/BEFf a b V= +  (1) 

 
where a and b are conversion factors (constants) and 
V is forest volume.  

The density of a biological stand (B, t hm-2) can 
be estimated by multiplying V (m3 hm-2), i.e.(Jiao et 
al., 2005) (Eq. 2): 
 
B aV b= +  (2) 

 
Consequently, stand biomass (w) can be 

expressed by the following equation (Jiao et al., 2005) 
(Eq. 3): 

 

1
i

k

i BEF i
i

w A F V
=

= × ×∑
 (3) 

 
where i is the dominant species, Ai is the tree stand 
area, Vi is the mean volume of the forest, and FBEFi is 
the corresponding conversion factor. 

Carbon storage can be estimated using a 
constant (Fang et al., 2002), derived from molecular 
formulas (Li et al., 1996), or measured directly (Mo et 
al., 2003). We used 0.05 as the constant for estimating 
carbon storage (Fang et al., 2002). 

Vegetation carbon storage (C) was calculated 
by multiplying the carbon in vegetation biomass (W) 
by the carbon content (Cc), as follows (Fang et al., 
2002) (Eq. 4): 
 

cC W C= ×  (4) 
 

Vegetation carbon density was defined as the 
vegetation carbon of per unit area. The carbon in this 
paper only refers to the vegetation carbon and does not 
include carbon in the litter layer. 
 
2.2.3. RBFN principle and training algorithm 

RBFNs are artificial neural network models 
that are widely used in the fields of taxonomy and 
biodiversity (Schwenker et al., 2001; Huang et al., 
2005). These models are composed of an input layer, 
a hidden layer, and an output layer that consists of 
three-layer feed-forward networks. Each layer has a 
plurality of neurons and a one-way connection 
between layers (Fig. 2), where Xk is the input layer (k 
= 1, 2, ..., N), Vj is the hidden layer input (j = 1, 2, … 
L), and Oi is the output layer (i = 1, 2, ..., M). Cjk = 
(Cj1, Cj2, ..., Cjn) is center and width of the hidden 
layer unit function. N, M, and K are the number of 
input, hidden, and output units, respectively. We used 
RBFN to analyze factors that affect the pattern of 
vegetation carbon in the karst area of northwest 
Guangxi, China by approximating the dataset 
distribution using a linear combination of Green’s 
functions (Haykin, 1994; Moody and Darken, 1989; 
Park and Sandberg, 1991) (Eq. 5). 

 
Fig. 2. The structure of a Radial Basis Function Network (RBFN) 

 1659 



 
Zhang et al./Environmental Engineering and Management Journal 17 (2018), 7, 1657-1666 

 
 

1
( ) ( )

N

i i
i

F x w G x x
=

= −∑
 (5) 

 
where G (x-xi ) is a Green’s function and x is its center. 

The Green’s functions were characterized by a 
mean vector xj and common variance σ2, as (Eqs. 6-7): 
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where: each equation consists of a linear superposition 
of multivariate Gaussian basis functions (probability 
bells) with centers xj, located at the data points and 

widths 
2
jδ .  

The initial number of nodes was set at two. The 
first node was assigned a Gaussian function centered 
on the center of data set, determined by Eq. (8): 
 

1

N
i
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i

xx
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 (8) 

 
and the second node was assigned a Gaussian function 
centered on the point determined by the vector xp that 
maximized the function (Eqs. 9-10) 
 

( ) ( )SP x Q x dS= ∫  (9) 
 
where: 
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The variance of Gaussian functions is assumed 
to be constant and equal to (Eq. 11): 
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where m is the number of dimensions (number of 
nodes in the hidden layer), x-(j) is the mean value for 
dimension j and r is an arbitrary ratio defining the total 
number of Gaussian functions. 

The second layer was carried out using a self-
organizing algorithm with the following steps: 
(1) Calculate the output of the Gaussian functions for 
all hidden nodes (Eq. 12) 
 

2
j ix c

iy e δ

−
−

=  (12) 
 
where i < n (number of nodes). 

(2) Identify the winner yw = max (yi), i < n. 
(3) If yw > αT, then change the position of the center 
of the winner using (Eq. 13): 
 

( 1) ( ) ( )( )k k k
w x j wc c r x c+ = + −  (13) 

 
where α is an arbitrary ratio (α = 2.0 in this case) and 
T is the threshold value (T = 10-4). 
(4) If yw < T/α, then construct a new hidden node with 
center at the point xj and variance equal to δ and 
increase the number of total hidden nodes n by 1. 

The algorithm stops when there are no new 
hidden nodes after testing all points of data set D. 
 
2.2.4. Impact factors of vegetation carbon density 

The following 13 factors were selected for 
analysis: 

(1) Altitude: the range of altitude in the study area 
was 92–1876 m; 

(2) Aspect: divided into 9 aspects; North (338–22°), 
the Northeast (23–67°), East (68–112°), Southeast 
(113–157°), South (158–202°), Southwest (203–
247°), West (248–292°), Northwest (293–337°), and 
no slope (<5° slope). Aspects were coded 1, 2, 3, 4, 5, 
6, 7, 8 and 9, respectively 

(3) Slope position: 6 positions, ridge (mountain 
watersheds), above, middle, lower (the downhill), vale 
(collection waterline on both sides of the valley), flat 
(plain and tableland). Slope positions were coded 1, 2, 
3, 4, 5, and 6, respectively;  

(4) Slope angle: the slope of samples in the study 
area were between 0 and 80°; 

(5) Soil thickness: sample thickness was 1–180 cm;  
(6) Humic layer: the thickness of humus layer was 

0–35 cm;  
(7) Vegetation coverage: total vegetation coverage 

in the study area was 10–100%; 
(8) Land type: according to the characteristics of 

land cover and utilization, including arbor, shrub, 
farmland, grass, and construction land; 

(9) Vegetation type: including coniferous forest, 
evergreen broad-leaved forest, deciduous broadleaf 
forest, bamboo forest, deciduous shrubs, and 
evergreen shrub; 

(10) Grade of rocky desertification: the degree of 
rocky desertification was defined as in the Forest 
Inventory Check Operating Rules of Guangxi. The 
study area included the following grades: no rocky 
desertification, potential, mild, moderate, and severe 
rocky desertification; 

(11) Forest species: 23 sub forest species were 
categorized as in the forest inventory check operating 
rules of Guangxi. Species were categorized according 
to their potential for such uses as soil and water 
conservation, national protection, scenic value, 
timber, et al.; 

(12) Forest type: the main two forest types were 
ecological forest and commercial forest. The 
ecological forest was subdivided into national 
ecological forest and local ecological forest. 
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Commercial forest was divided into timber forest, 
firewood forest, and economic forest; 

(13) Area level: there were 7 categories, according 
to the contiguous area of each vegetation type. 
Categories were <1 hm-2, 1–4.9 hm-2, 5–9.9 hm-2, 10–
19 hm-2, 20–49 hm-2, 50–99 hm-2, and >100 hm-2 and 
were coded 1, 2, 3, 4, 5, 6, and 7, respectively. 
 
3. Results and discussion 
 
3.1. Pattern characteristics of vegetation carbon 
 
3.1.1. Temporal change in vegetation carbon 

Vegetation carbon density in the study area 
increased from 29.04 t hm-2 in 2005 to 29.57 t hm-2 in 
2010 (Table 1). Accordingly, the storage of vegetation 
carbon had increased from 4.19 × 104 t to 4.27 × 104 t 
with an increase of 1.84%. The vegetation carbon 
density in the study area was lower than the overall 
vegetation carbon density of China (38.05 t hm-2), 
Fujian Province (32.85 t hm-2) and Hainan Province 
(32.59 t hm-2).  

However, the vegetation carbon density in the 
study area was higher than in northern Hunan 
Province (18.53 t hm-2) and Sichuan Province (18.47 t 

hm-2) (Fang et al., 1996; Wang, 2004; Cao et al., 2002; 
Jiao et al., 2005; Huang et al., 2008). The vegetation 
carbon density at the study site was close to that of 
Jiangxi (25.38 t hm-2) (Wang and Wei, 2007). The 
cover type with the highest vegetation carbon density 
was arbor (34.82 t hm-2 and 35.12 t hm-2 in 2005 and 
2010, respectively), followed by bamboo, which 
accounted for about 50.82% and 54.62% of total 
vegetation carbon storage in 2005 and 2010, 
respectively.  

Because the samples were fixed, changes in the 
number of samples in each land type classification 
may indicate regional vegetation changes to some 
degree. In the period from 2005 to 2010, the number 
of samples classified as arbor and shrub increased, 
whereas samples classified as no stumpage forest, 
unused land, and farmland decreased dramatically 
(Table 1). These changes indicate that the vegetation 
coverage in the study area has been improved by rocky 
desertification control policies, such as ecological 
migration program and the Green for Grain program. 

Although the greatest vegetation carbon 
density was in provincial and national nature 
protection areas, the other projects also resulted in 
dramatic increases in vegetation carbon (Fig. 3).  

 
Table 1. Vegetation carbon density and their changes in Guangxi, China between 2005 and 2010 

 

 
 

(a) (b) 
 

Fig. 3. Vegetation carbon density of areas influenced by (a) different conservation projects 
and (b) different vegetation species (t.hm-2)  
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2005
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Land type 
Sample number Vegetation Vegetation 

carbon density (t.hm-2) carbon storage (* 104 t) 
2005 2010 05-10 2005 2010 05-10 2005 2010 05-10 

Arbor 612 664 52 34.82  35.12  0.30  2.13  2.33  0.20  

Bamboo  10 11 1 29.35  28.52  -0.83  0.03  0.03  0.00  
Shrub 231 244 13 24.63  24.53  -0.11  0.57  0.60  0.03  
No stumpage forest 134 108 -26 24.66  25.20  0.53  0.33  0.27  -0.06  
Farmland 324 308 -16 24.86  24.80  -0.06  0.81  0.76  -0.04  
Grassland 18 10 -8 24.90  25.31  0.40  0.04  0.03  -0.02  
Water area 14 19 5 24.55  24.41  -0.15  0.03  0.05  0.01  
Unused land 70 45 -25 24.41  24.55  0.14  0.17  0.11  -0.06  
Construction land 31 35 4 25.11  25.61  0.50  0.08  0.09  0.01  
Total 1444 1444 -  29.04  29.57  0.53  4.19  4.27  0.08  
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The vegetation carbon density of water 
conservation forest and special use forest was 
relatively high (more than 30 t hm-2) (Fig. 3). This 
could be attributed to the implementation of rocky 
desertification control measures. 
 
3.1.2. Spatial distribution of vegetation carbon 

Vegetation carbon density tended to be greater 
in the western part of the study area than in the eastern 
part of the study area (Fig. 4). Whereas vegetation 
carbon density was 28–35 t hm-2 in the western part, it 
was 25–30 t hm-2 in the eastern part of the study area. 
The distribution of vegetation carbon density was 
similar to that of vegetation net primary productivity 
(NPP) and vegetation coverage. The Previous research 
showed that mean vegetation coverage was more than 
60% and mean NPP was more than 1000 g m-2 in the 
west, and vegetation coverage was less than 30% and 
NPP was 100 g m-2 in the east in 2005 (Zhang et al., 
2011). The rocky desertification land in Guangxi 
China was the third largest region of rocky 
desertification in China and was mainly distributed in 
the counties of Pingguo, Dahua, Duan, Masan, 
Donglan, Bama, and Fengshan (Yang, 2003). These 
counties were mainly located in the eastern or middle 
part of the study area. 

The spatial variation of vegetation carbon 
density differed from the spatial distribution of 
vegetation carbon density. The vegetation carbon 
density generally increased in the study area (Fig. 5). 
Between 2005 and 2010, the vegetation carbon density 
of 16 counties remained at the same level and that of 
7 counties increased, including the counties of Napo, 
Pingguo, Longlin, Donglan, Leye, Huanjiang, and 
Tiane. According to results of rocky desertification 
monitoring in 2005, there was 83,366.67 hm2 of rocky 
desertification in Pingguo county. In this county, the 
Green for Grain program was carried out in areas 
totaling 45,333.33 hm2.  

Vegetation carbon density had improved in this 
study region as the result of recent implementations of 
control measures for dealing with rocky 
desertification. Results of previous researches showed 
that the ecosystem service has improved since 2005 in 
typical karst regions (Zhang et al., 2011). 
 
3.1.3. Distribution pattern of vegetation carbon 

In order to evaluate the pattern of vegetation 
carbon distribution in the study area, we used hot spot 
analysis (spatial statistics, Getis-Ord General G). The 
resultant Z scores indicated whether features were 
tightly clustered or widely scattered. This method 
works by examining each feature within the context of 
neighboring features. A feature with high vegetation 
carbon density was interesting but may not be a 
statistically significant hot spot.  

To be a statistically significant hot spot, a 
feature must have a high value and be surrounded by 
other features with high values as well. The local sum 
for vegetation carbon density and its neighbors is 
compared proportionally to the sum of all features; 
when the local sum is much different from the 
expected local sum, and that difference is too large to 
be the result of random chance, a statistically 
significant Z score was generated. The G statistic 
returned in the dataset is a Z score.  

Hot spot analysis of vegetation carbon density 
indicated a random pattern of distribution in 2005, but 
a highly clustered pattern in 2010 (Fig. 6). Large, 
positive Z scores indicate intense clustering of high 
values (hot spot). Small, negative Z scores indicate 
intense clustering of low values (cold spot). The Z 
score was -0.273287 in 2005, but was 2.780397 in 
2010. This indicates that the distribution pattern of 
vegetation carbon density may have been impacted by 
rocky desertification control measures. 
. 

 

 
 

Fig. 4. Distribution of vegetation carbon density of samples in Guangxi, China in 2005 and 2010 
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Fig. 5. Vegetation carbon density in each county in Guangxi, China 
 

  
(a) (b) 

 
Fig. 6. The general G for distribution of vegetation carbon in the study area in 2005 (a)and in 2010 (b) 

 
3.2. Impact factor analysis of vegetation carbon 
pattern 
 
3.2.1. The model 

The total number of samples was 1377, 
excluding non-vegetated samples. The effective 
number of samples was 1297 (80 test samples were 
excluded from analysis automatically). We used 
74.3% of the effective sample (964) for training and 
25.7% of the effective sample (333) to test the model. 
There were 13 impact factors in the input layer of the 
FRBN model in this study. The output layers were 
vegetation carbon density, significance of impact 
factors, and an error function (Table 2). There were 
516 hidden layer units in the trained model. The 
activation function was softmax and the error function 
was the sum of squares.  

 
3.2.2. Results of impact factors on vegetation carbon 

The rankings of the significance of the 13 
factors that affect the spatial distribution of vegetation 
carbon density were (Fig. 7): land type > forest type > 

vegetation species > vegetation type > degree of rocky 
desertification > humus layer thickness > area level > 
vegetation coverage > soil thickness > slope position 
> slope > aspect > altitude. The top 4 impact factors 
were land type, forest type, vegetation species, and 
vegetation type, and their significances were all above 
50%. The next 5 factors, rocky desertification degree, 
humus layer thickness, area level, vegetation 
coverage, and soil thickness, had standardization 
significances of 15–30%. The least significant impact 
factors for vegetation carbon density were the 4 
topography factors, and their standardization 
significances were only 2–11%. This indicated that the 
impacts of topography factors on the distribution of 
vegetation carbon density were limited, and factors 
associated with human activities, such as land type, 
forest type, vegetation species, and vegetation type 
had relatively larger impacts on vegetation carbon 
density. Therefore, the ecological immigration 
program and the Green for Grain program had 
important impacts on the spatial distribution of 
vegetation carbon density. 
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Table 2. The network information of model processing 
 

Levels Information 
Input layer Factors 1 Altitude 

2 Aspect 
3 Slope position 
4 Slope 
5 Soil thickness 
6 Humus layer 
7 Vegetation coverage 
8 Land type 
9 Vegetation type 
10 Degree of rocky desertification 
11 Vegetation species 
12 Forest type 
13 Area grade 

Units 516 
Hidden layer Units number 5a  

Activation function Softmax 
Output layer Dependent variable 1 Total_c (Vegetation carbon density) 

Units number 1 
Scale dependent variable rescaling method Standardization 
Activation function Identical 
The error function Quadratic sum 

 

 
 

Fig. 7. The significance of impact factors for the distribution of vegetation carbon density 
 

Table 3. The correlations between environmental factors and vegetation carbon density 
 

 AL AS SP SL ST HL VC LT VT DR VS FT AG 
VC 202** -072** -160** 065* 323** 348** 246** .374** -.089** -205** 305** 236** 155** 
VC: Vegetation carbon density, AL: Altitude, AS: Aspect, SP: Slope position, SL: Slope, ST: Soil thickness, HL: Humus layer, VC: Vegetation 

coverage, LT: Land type, VT: Vegetation type, DR: Degree of rocky desertification, VS: Vegetation species, FT: Forest type, AG: Area grade. ** 
Significant at 0.01 level * Significant at 0.05 level 
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Of the 13 impact factors investigated, 12 were 
significantly correlated with vegetation carbon density 
at the 0.01 level (Table 3). The remaining impact 
factor (slope) was significant at the 0.05 level. Soil 
thickness, humus layer, vegetation coverage, forest 
type, vegetation type, altitude, and area level were 
positively related to vegetation carbon density. The 
pattern of vegetation carbon density was positively 
affected by these environmental factors. Slope aspect, 
slope position, and rocky desertification were 
negatively correlated to vegetation carbon density. As 
the degree of rocky desertification increased, the 
vegetation carbon density decreased (Hu et al., 2008). 
 
4. Conclusions 

 
In this study, we used forest inventory data in 

2005 and 2010 and geospatial technology to analyze 
the spatial pattern of vegetation carbon and factors that 
impact it in a typical karst area of northwest Guangxi, 
China. The results showed that vegetation carbon 
density increased from 29.04 t hm2 to 29.57 t hm2 
between 2005 and 2010. The storage of vegetation 
carbon increased 1.84% during the same period. 
Spatial variation in vegetation carbon density 
generally increased in the study area between 2005 
and 2010. Hot spot analysis indicated a random 
distribution in 2005, but a highly clustered distribution 
in 2010. The impacts of factors associated with human 
activities had relatively high impacts on the 
distribution of vegetation carbon density. The results 
indicated that the ecological immigration program and 
Green for Grain program had important impacts on the 
spatial distribution of vegetation carbon density. 

The distribution trend of vegetation carbon 
density was similar to the distribution of vegetation. 
The spatial pattern of vegetation changes in the study 
region indicated that vegetation carbon density had 
increased as a result of recent rocky desertification 
control measures. For example, planting and 
protection of forest areas was the main measures for 
desertification control in Hechi City. Beginning in 
2008, the counties of Duan, Dahua, Fengshan, and 
Huanjiang started to implement rocky desertification 
control projects, in which 9,000 hm2 per county were 
comprehensively managed as part of a pilot program. 
In summary, the vegetation carbon density has 
increased in this study region due to rocky 
desertification control. The results of the present study 
showed that factors affected by humans have 
important effects on the pattern of vegetation carbon 
density in a typical karst region. Our study also 
showed that rocky desertification control measures 
had an important impact on the pattern of vegetation 
carbon density. 

The conflict between economic development 
and environmental protection was a common issue 
worldwide and was also noted in rocky desertification 
in karst areas (Brown et al., 2011). Poor environmental 
quality was known to be an important restricted 
condition in karst areas. Therefore, conservation of 

karst areas should take priority over restricting the 
uncontrolled reclamation of these areas for economic 
purposes in future land use practices. Controlling karst 
rocky desertification requires the optimization of land 
use structure. Although discontinuing all reclamation 
activities in karst areas might not be possible, future 
land reclamation projects need to be controlled and 
should be implemented after rigorous environmental 
impact assessment. More detailed studies of the 
impacts of karst reclamation projects on ecosystem 
services provided in the southwest China were 
necessary.  

The present study has some limitations that 
should be addressed in future studies. First, we did not 
consider the soil carbon pool, so the carbon capacity 
of the whole forest system was not estimated. Second, 
the degree of uncertainty associated with the BEF 
method of vegetation biomass estimation requires 
further research. Finally, although the main impact 
factors on the pattern of vegetation carbon density 
were investigated using RBFN, more comprehensive 
and accurate investigation into the driving 
mechanisms of the distribution of vegetation carbon 
density in karst regions are needed. 
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