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Abstract 
 
Sulfide bearing mine tailings generated through mining and processing of mineral ores is one of the serious problems around the 
world due to their potential environmental hazards. Current study focuses on vertical distribution and potential mobility of metals 
in New and Old tailings of a Lead and Zinc mining area of India. Mine tailing profiles sampled from New (0-500mm) and Old 
tailing (0-400mm) dams were chemically (pH, EC, Carbonate content, Cd, Pb, Zn and Mn levels) and mineralogically (using X-
ray Diffraction) characterized. Both the new and old tailings are alkaline having high carbonate content. However, the pH of old 
tailings is less than the new tailings. The vertical profile distribution of metals in new tailings indicate a decrease in Pb levels with 
depth up to 200 mm and a substantial increase in Zn and Cd levels were noted below 200 mm depth. However, no differences were 
observed for Mn levels with depth. In case of Old Tailings, no discernible pattern for Cd, Pb, Zn and Mn levels with depth was 
observed. These chemical and mineralogical observations confirm that the new tailings are undergoing oxidation and weathering 
in the surface layers, however, the old tailings are sort of stabilized at least up to sampling depth. To estimate the potential mobility 
of Cd, Pb and Zn in New and Old tailings, single extraction (EDTA 0.05 mol/L) was applied to surface tailings. The correlation 
coefficients between total and EDTA extractable Cd and Zn (r values for Cd and Zn being 0.965 and 0.976, respectively, and P 
value being 0.001) indicate statistically significant relation. The results of EDTA extraction show that out of the three metals, Pb 
has maximum extractability in new tailings, whilst Cd has the maximum mobility in old tailings, and Zn has the least potential 
mobility in both types of tailings. 
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1. Introduction 

 
Mining and milling operations are the 

important point source of trace elements in the 
environment (Adriano, 1986). Mining and 
beneficiation processes generate four categories of 
large-volume waste: mine waste (overburden, barren 
rocks), tailings, dump heap leach, and mine water 
(Dudka and Adriano, 1997). Extraction and 
processing of base and precious metals from the 
sulfide ore deposits generate large volumes of sulfide 
tailings (Moncur et al., 2015). Sulfide minerals are 
thermodynamically unstable in presence of oxygen 
and water. When sulfidic mine tailings are exposed to 

water and oxygen, the resulting oxidative weathering 
of sulfides can generate H+ and release sulfate and 
metal(oid)s to tailing pore waters (Blowes et al., 2013; 
Lindsay et al., 2015). Depending on the nature of ore 
deposits, metals such as Cu, Zn, Pb, Ni, Cd, Co, Hg, 
Al, Mn and U and metalloids including As, Sb and Se 
are released in mine drainage (Nordstrom, 2011). 
Sulfide-bearing mine tailings are a serious 
environmental problem around the world (Schuwirth 
et al., 2007). The extent of environmental impacts 
associated with sulfide tailings deposits depends upon 
their mineralogical and geochemical composition, and 
upon in situ chemical, biological, and physical 
processes (Lindsay et al., 2015). Mine tailings may 



 
Anju/Environmental Engineering and Management Journal 17 (2018), 7, 1635-1644 

 
weather and leach metals into tailing profile and 
ground water for several hundreds of years after 
mining activities have ceased. So, field studies of 
metals in vertical profile of tailings can be useful for 
predicting the pollution risk to groundwater from the 
sulfide tailings. 

The shift in paradigm from mere determination 
of total elemental concentration to a more advanced 
fractionation-based approach points to the general 
recognition that information about the physiochemical 
forms of trace elements is required for understanding 
their environmental fate and behavior, including 
mobility, pathways and bioavailability. A variety of 
standardized leaching tests with variable reagents, and 
experimental conditions are used to mimic differing 
environmental conditions. Strong acids are used to 
determine total concentrations of potentially harmful 
elements, whereas weaker solutions are used to 
determine compounds that are relatively soluble and 
bioavailable (Salminen and Sipila, 1996). Various 
extraction schemes have been developed for 
discerning individual geochemical phases, ranging 
from simplistic methods for distinguishing the “labile” 
and “residual” fractions (single extractions), to more 
sophisticated approaches enabling the sequential 
removal of water soluble, exchangeable, adsorbed, 
carbonate bound, phosphate, Fe/Mn oxide bound, 
sulphide and organic bound and silicate fractions 
(sequential extraction procedures). In single 
extractions a large spectrum of extractants have been 
used to extract the “mobile” or “bioavailable” forms 
of metals (He and Singh, 1995; Karczewska et al., 
1998), viz. 
 Very strong acids such as aqua regia (Vidal et 

al., 1999), nitric acid (Sutherland et al., 2001), HCl 
(Filipek and Pawlowski, 1990; Rieuwerts et al., 2000; 
Sutherland and Tack, 2000; Sutherland et al., 2001; 
Taylor et al., 1993). 
 Chelating agents like EDTA (Anju and 

Banerjee, 2011; Diaz-Barrientos et al., 1999; Filipek 
and Pawlowski, 1990; McGrath, 1996; Sanders et al., 
1987; Sutherland et al., 2001; Tokalioglu and Kartal, 
2005; Vidal et al., 1999), DTPA (Taylor et al., 1993), 
CH3COOH (Filipek and Pawlowski, 1990; Vidal et 
al., 1999). 
 Buffered salt solutions e.g. ammonium acetate 

(pH 7) (Ure et al., 1993). 
 Unbuffered salt solutions e.g. CaCl2 (Diaz-

Barrientos et al., 1999; Sanders and Adams, 1987; 
Vidal et al., 1999), NaNO3 (Gupta and Aten, 1993; 
Hani and Gupta, 1982), BaCl2 (Juste and Solda, 1988) 
etc.  

These extractants are hypothesized to extract 
exchangeable or weakly bound “available” metals in 
the solid matrices viz. soils, sediments etc., which are 
believed to be bioavailable. The content of extractable 
forms of heavy metals is a more precise index of their 
ability to migrate (Anderson, 1976; Haynes and Swift, 
1986; Wiklander and Wahtras, 1977). 

The present study is centered on Zawar, a 
historical Zn-Pb mining community in India. The 
relics of the historical mining can be seen as hillocks 

surrounding old surface and subsurface mine 
workings, earthen retorts and slag heaps. Modern 
mining, however, commenced in 1942. Zawar lies 
within a belt of Aravalli system. The ore is confined to 
the main dolomite horizon (Chakrabarti, 1967; Smith, 
1964). Sphalerite (ZnS) is the predominant sulphide 
mineral in the ore, second most abundant being pyrite 
in a gangue of dolomite and quartz. Galena (PbS) is 
more locally concentrated. Native silver, chalcopyrite, 
arsenopyrite, pyrolite, and magnetite are also known 
to occur (Mookherjee, 1964). The conventional froth-
flotation technology is adopted to produce separate 
lead and zinc concentrates. On an average the ore 
contains 5% metal (both Pb and Zn) and 95% of the 
total mined ore is pumped out as tailings. Fine-grained 
tailings generated during the beneficiation of sulphide 
ores are directed to the New Tailing Dam. Prior to 
1980's, tailings were dumped in an area called Old 
Tailing Dam, which has been stabilized by plantation.  
The volume of tailings generated is normally in far 
excess of the liberated resource and the tailings often 
contain potentially hazardous contaminants (Kossoff 
et al., 2014). Thus, both tailing dams represent by far 
the biggest accumulations of environmentally 
dangerous waste materials in Zawar area. 

The purpose of this study was to investigate the 
vertical distribution of metals (viz. Cd, Pb, Zn and Mn) 
in tailing profiles from New and Old Tailing Dams. 
Additionally, the potential mobility of Cd, Pb and Zn 
in New as well as Old tailings was estimated by using 
single extraction (EDTA 0.05 mol/L). 
 
2. Material and methods 
 
2.1. Sample collection and preparation  
 

Tailing profiles were sampled as undisturbed 
core, by using a specially designed cylindrical 
stainless-steel corer from New tailing dam (n = 5, 
NTD1 to NTD5, 0-500mm) and Old tailing dam (n = 
4, OTD1 to OTD4, 0-400mm). Soon after collection, 
the core samples were cut into 100mm sections and 
carefully transferred to clean and dry self-sealing 
polyethylene bags for transport to laboratory. The 
tailings were air-dried at room temperature, 
disaggregated with a wooden roller and then sieved 
through 2 mm sieve. The samples were homogenized 
by coning and quartering and stored in tightly sealed 
polyethylene bags for further analysis.  

 
2.2. Analytical techniques 
 

The pH and electrical conductivity (EC) of 
the tailings were measured in solid/liquid ratio of 1: 
2.5 with distilled water (Okalebo et al., 1993). The 
carbonate content analysis involved the dissolution of 
carbonates in an excess of standard hydrochloric acid 
and back titration of excess acid with standard sodium 
hydroxide (Rowell, 1994). Total metal content of the 
tailings was determined after tri-acid digestion (using 
a combination of HClO4, HNO3 and HF) as described 
by Agemian and Chau (1975).  
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Only surface (0-100mm) samples from both 

the locations were considered for single extraction 
analysis. Measurement and Testing Programme 
(formerly BCR) of the European Commission had 
launched a project aiming at harmonizing 
measurements for extractable trace metal contents in 
soil. EDTA, acetic acid and ammonium acetate with 
DTPA were the three extractants selected for 
harmonization and validation of single extractions 
(Quevauviller et al., 1997). EDTA 0.05 mol/L (pH 7) 
has been used for the certification of soil reference 
materials by BCR. 

This test is assumed to extract both carbonate 
bound and organically bound fractions of metals and 
was hence considered to be suitable for calcareous soil 
analysis (Quevauviller, 1998). To assess the potential 
mobility of Cd, Pb and Zn in tailings, a single 
extraction scheme using EDTA as described by 
Quevauviller (1998) was preferred for the present 
work as it has been extensively tested in previous 
studies also. All the vessels in contact with samples or 
reagents were cleaned by soaking in HNO3 4 Mol/L 
(overnight) and rinsed repeatedly with distilled water. 
EDTA extractions were conducted in triplicate in 100 
mL centrifugation tubes with tight lids by using a 
mechanical end-over-end shaker. All chemicals used 
were of analytical grade, and double distilled or Milli. 
Q. water was used throughout.  

Cadmium, lead, zinc and manganese in 
digests as well as extracts were determined by flame 
atomic absorption spectrometry (FAAS) using a 
Shimadzu AA-6800 system with air/acetylene flame. 
Calibrants were prepared from 1000 µg/mL 
Spectrosol standard solutions from Merck as well as 
from standard solutions prepared in laboratory 
following APHA (1995) standard methods. Multi-
level standards were prepared in the same matrix as 
the extracting reagent to minimize matrix effects. 
Blanks were run simultaneously for background 
correction and other sources of error. Mineralogical 
analysis of New and Old tailings was done by using 
Philips X’Pert model XRD instrument. Samples were 
scanned from 50 to 900 2θ. The peak analysis was done 
by using X’Pert data collector. 
 
3. Results and discussion 
 
3.1. Physicochemical and mineralogical analysis  
 

pH, EC, Carbonate content, Cd, Pb, Zn and 
Mn levels in surface tailings (0-100mm) have already 
been discussed in previous publication (Anju and 
Banerjee, 2010). Briefly, the pH of both type of 
tailings was alkaline, which contrasts with the other 
studies in similar type of metal mining areas, where 
the pH is usually acidic (Grimalt et al., 1999; Morrell 
et al., 1996; Shu et al., 2001; Simon et al., 1999). In 
general, sulfide rich and carbonate-poor materials 
produce acidic conditions in areas having metal 
sulphide as the ores. In contrast, alkaline-rich 
materials, even with significant sulfide concentrations,  
often produce alkaline conditions (Skousen et al., 

2000). The pH of old tailings was less than the new, 
which could be because of the ability of sulphide 
tailings to generate acid upon weathering. The 
carbonate content of both the New and Old tailings 
was quite high, indicating calcareous nature of these 
tailings and hence the alkaline pH.  
 The color of the new tailings was gray, 
sometimes brownish silty material, but the colour of 
old tailings was always yellowish brown. The 
formation of efflorescent salts (ocherous and white 
deposition) on the surfaces of old tailings was also 
observed. Mineralogical analysis indicated the 
presence of Dolomite, Quartz, Ankerite and other 
sulphide minerals in New and Old tailings.  
 
3.2. Profile distribution of metals in tailings 
 

The flotation tailings profiles were 
investigated for Cd, Pb, Zn and Mn levels at two 
dumping sites called New tailing dam and Old tailing 
dam, which represent by far the biggest accumulations 
of environmentally dangerous waste materials in the 
area. The mean concentrations of Pb, Zn, Mn and Cd 
in New tailings (0-100mm, n=5) were 1099, 1908, 
2932 and 13.96 mg kg-1 and in Old tailings (0-100mm, 
n=4) were 1903, 5098, 2271 and 22.93 mg kg-1, 
respectively. The results indicate high levels of Cd, 
Pb, Zn, and Mn in both types of tailings. The levels of 
metals present in the tailings are comparable with the 
levels observed in many previous studies on tailings in 
similar kind of mining areas (Table 1).  

The vertical profile distribution of Cd, Pb, Zn 
and Mn in New Tailings (0-100, 100-200, 200-300, 
300-400 and 400-500 mm) and Old Tailings (0-100, 
100-200, 200-300 and 300-400 mm) is shown in Fig. 
1(a-d) and Fig. 2(a-d), respectively. In case of new 
tailings, the depth-wise distributions indicate a 
decrease in Pb levels with depth up to 200 mm and a 
substantial increase in Zn and Cd levels were noted 
below 200 mm depth. However, no differences were 
observed for Mn levels with depth.  

The contrasting trend noted for Pb is 
explained by the formation of highly insoluble 
anglesite (PbSO4) in the surface layer as confirmed by 
XRD analysis of surface samples. Shu et al. (2001) 
have also observed significantly lower concentrations 
of Zn and Cd in surface (0-10cm) and subsurface layer 
(10-20cm), than those of deep layers (20-50cm and 
50-100cm) in their study on Pb/Zn mine tailings at 
Lechang, China. Morrell et al. (1996) in their study on 
mine tailings from New Zealand and Hofmann and 
Schuwirth (2008) in a study on sphelarite bearing 
mine waste tailings from Adolf-Helene mine, 
Germany have also observed increase in Zn and 
decrease in Pb concentration with depth.  

The occurrence of anglesite in surface layer 
and a substantial increase in concentration of Zn and 
Cd below 200mm depth are two chemical and 
mineralogical observations confirming that oxidation 
and weathering have been largely confined to surface 
tailings in new tailing dam.   
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Table 1. Heavy metal levels in surface tailings (µg/g) of mining areas as reported in literature 

 

Location 
Pb Zn Cd Cu As 

Reference Range Mean 
(Median) Range Mean 

(Median) Range Mean 
(Median) Range Mean 

(Median) Range Mean 
(Median) 

Adolf-Helena 
mine, Germany 
(former tailing 
pond) 

 27 
mmol/kg  10 

mmol/kg  0.035 
mmol/kg  3.5 

mmol/kg  0.5 
mmol/kg 

Schuwirth 
et al., 2007 

Aznalcollar 
spill, Spain 
 

 7.05mg/g  14 mg/g  300mg/k
g  2.05 

mg/g  5.33 
mg/g 

Lacal et al., 
2003 

Boleslaw, 
Cracow, Poland 
 

735-
19555 4039 1578-

36000 1.5% 9-371   1-390   

Krzaklewsk
i & 
Pietrzykow
ski, 2002 

Wiesloch, 
Germany 
 

 0.72%  3.13%  188mg/k
g  -  2.1% 

Stuben et 
al., 2001 

Lechang Pb/Zn 
mine, China  2784  2029  12  132   Shu et al., 

2001 
Aznalcollar 
spill, pyrite 
mud, Agrio 
river, Spain 

 7141  9448  31  1968   

Alastuey et 
al., 1999 

Pyrite mine 
Aznalcollar, 
Spain 

 (9507.3)  (7183.5)  (28.6)    (3749) 
Simon et 
al., 1999 

Baxter Springs 
in Cherokee 
County, 
southeast 
Kansas 

 351  17850  125     

Zhu et al., 
1999 

Aznalcollar, 
Spain 
 

 7957  10707  40  2126  5321 
Vidal et al., 
1999 

Aznalcollar, 
Spain 
 

 8091  8832  33  1323  4692 
Lopez-
Pamo et al., 
1999 

Guadiamar, 
Spain 
 

 7888  7096  25.1  1552  2878 
Cabrera et 
al., 1999 

Montevecchio(S
ardinia) Coarse 
material (C) 

 17200  16400  150  700  - 
Fanfani et 
al., 1997 

Montevecchio(S
ardinia) fine 
material (F) 

 20900  21300  140  570  - 
Fanfani et 
al., 1997 

Montevecchio(S
ardinia) 
Very fine 
material (VF) 

 19000  16300  120  520  - 

Fanfani et 
al., 1997 

Tui base metal 
mine, Te Aroha, 
New Zealand 

 10568  486    113   
Morrell et 
al., 1996 

Southeast 
Kansas  1370  13700  90     

Abdel-
Saheb et 
al., 1994 

Old Lead Belt, 
Missouri (400 
mesh size) 
 

 3867  1329  33.9  88.6   

Clevenger, 
1990 

Gold mine, 
Serra de Santa 
Cruz(Bahia, 
Brazil) 

 21  55  0.7  87  71 

Andrade 
Lima et al., 
2008 

Goldmine, 
Zimbabwe 
  -  225±20  17.6±0.1  1750±10

0   

Zaranyika 
and 
Chirinda, 
2011 

*Units are µg/g unless otherwise mentioned 
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However, no discernible pattern for Cd, Pb, Zn 
and Mn levels with depth (Fig. 2a-d) was observed for 
Old Tailing Profile (except profile 4), indicating that 
these tailings are sort of stabilized for weathering at 
least upto a depth of 400 mm. For profile 4, an increase  

in Cd, Pb and Zn concentration was observed at 30-
40cm depth. This indicated that acidification 
accelerated metal solubility, which resulted in 
depletion of Cd, Pb and Zn in surface tailings and 
relative enrichment in deep layers (30-40cm).  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 1. (a) Depthwise distribution of Cd in New Tailings; (b) Depthwise distribution of Pb in New Tailings;  

(c) Depthwise distribution of Zn in New Tailings; (d) Depthwise distribution of Mn in New Tailings 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Fig. 2.(a) Depthwise distribution of Cd in Old Tailings; (b) Depthwise distribution of Pb in Old Tailings; 

(c) Depthwise distribution of Zn in Old Tailings; (d) Depthwise distribution of Mn in Old Tailings 
 

3.3. Single extraction analysis 
 
3.3.1. EDTA extraction 

Single extraction tests are commonly used to 
study the eco-toxicity and mobility of metals in solid 
matrices, e.g. to assess the bioavailable metal fraction 
(and thus to estimate the related phyto-toxic and  

 

nutritional deficiency effects) and environmentally 
accessible trace metals upon disposal of sediment or 
wastes on a soil (thus assessing contamination of 
ground waters). EDTA has been extensively used for 
determination of extractable metal content of polluted 
and unpolluted soils (Anju and Banerjee, 2011; 
McGrath, 1996; Schramel et al., 2000; Tokalioglu and  
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Kartal, 2005; Viro, 1955), road sediments (Sutherland 
et al., 2001), municipal and industrial sludges (Lo and 
 Chen, 1990) and is increasingly being used in the 
reclamation of contaminated soils and sediments 
(Cline and Reed, 1995; Mench et al., 1994; Sun et al., 
2001). Table 2 shows the EDTA extractable 
concentrations and percentage of total metal extracted 
by EDTA in both type of tailings. Relative EDTA 
extractability of Cd, Pb and Zn in New tailings (Table 
3) followed the order: Pb (96.53 ± 4.43) >>Cd (55.98 
± 4.81) >>Zn (33.16 ± 7.57). The EDTA extractability 
was maximum for Pb followed by Cd in all the 
profiles. Out of the three metals, Zn was least 
mobilizable. Vidal et al. (1999) in their study on 
Aznalcollar (Spain) toxic spill have also observed 
similar order i.e. Pb>Cd>Zn, of EDTA extractability 
of metals from mine sludge (tailings).  Many other 
investigations have demonstrated the ability of EDTA 
to extract a large proportion of total soil Pb (Abdel-
Saheb et al., 1994; McGrath and Cegarra, 1992; 
Pichtel et al., 2001; Sposito et al., 1982; Tsadilas et al., 
1995). Clayton and Tiller (1979) observed that EDTA 
extracted 74-93% of total Pb from soils contaminated 
by smelter emissions, but only 20-60% 
uncontaminated soils.  

Relative EDTA extractability of Cd, Pb and Zn 
in Old tailings (Table 3) followed the order: Cd (61.94 
± 25.09) ≥ Pb (55.42 ± 10.54) > Zn (36.23 ± 6.14). The 
relative extractability of these metals is consistent with 
the findings of the study of Anju and Banerjee (2011) 
on soils of a lead and zinc mining area, India and 
McGrath (1996)’s on Irish soils, where EDTA 
extractability followed the sequence 

Cd>Cu=Pb>Ni=Zn>Cr. EDTA extracts of soils tend 
to correlate well with plant contents, in particular with 
the plant-available fraction for Cd, Cu, Ni, Pb and Zn 
(Sanders et al., 1986), Cd (Lag and Elsokkary, 1978) 
and Cu (Sanders et al., 1987). Therefore, complexants 
like EDTA are frequently used to extract mobilizable 
(potentially bioavailable or potentially leachable) 
metal fraction in soil (Gupta et al., 1996). 
 
3.3.2. Correlation 

Correlation coefficients between the EDTA 
extractable Cd, Pb and Zn vs their ‘total’ elemental 
contents in Tailings are given in Table 4. The amount 
of Cd, Pb and Zn extracted by EDTA and their total 
concentrations showed a linear positive correlation, 
which are statistically significant (r values for Cd, Pb 
and Zn being 0.965, 0.638 and 0.976, respectively and 
P values being <0.001). The correlation coefficients 
indicate a strong relation between EDTA extractable 
and total Cd and Zn. Anju and Banerjee (2011) has 
also observed statistically significant linear positive 
correlations between EDTA extractable and total 
concentrations of Cd, Pb and Zn (r values for Cd, Pb 
and Zn being 0.901, 0.971 and 0.795, respectively, and 
P values being <0.001), in soils of a lead and zinc 
mining area, India. These findings are in agreement 
with other studies such as McGrath’s (1996) work on 
Cd, Cu and Ni; Boon and Soltanpour’s (1991) work 
on Cd, Zn and Pb and Mehra et al.’s (1999) work on 
Cd and Cu for contaminated soils. These results can 
appear to justify the use of ‘total’ metal contents as a 
useful preliminary indicator of areas where the risks of 
metal excess or deficiency are high. 

 
Table 2. EDTA extractable concentrations (mg kg-1) and percentages of total Cd, Pb and Zn in New and Old surface tailings 

 

Sample ID Cd Pb Zn 
EDTA-Extractable Total % Extracted EDTA-Extractable Total % Extracted EDTA-Extractable Total % Extracted 

NTD1 3.85 6.98 55.16 735 768 95.70 355 1227 28.93 
NTD2 7.06 12.96 54.48 979 987 99.19 597 1990 30.00 
NTD3 9.81 19.94 49.20 1379 1525 90.43 754 3069 24.57 
NTD4 10.41 16.95 61.42 1186 1246 95.18 727 1758 41.35 
NTD5 7.74 12.96 59.72 992 971 102.16 613 1498 40.92 
OTD1 3.33 13.46 24.74 747 1584 47.16 956 3538 27.02 
OTD2 13.81 18.44 74.89 799 1691 47.25 1686 4276 39.43 
OTD3 14.19 20.44 69.42 1070 1845 57.99 1785 4588 38.91 
OTD4 30.99 39.38 78.69 1727 2493 69.27 3161 7991 39.56 
 

Table 3. Relative mobility of Cd, Pb and Zn in New and Old tailings as estimated by single extraction 
 

Matrix Type Relative EDTA extractability and mobility of Cd, Pb and Zn 
New Tailings Pb (96.53 ± 4.43) >>Cd (55.98 ± 4.81) >>Zn (33.16 ± 7.57) 
Old Tailings Cd (61.94 ± 25.09) ≥ Pb (55.42 ± 10.54) > Zn (36.23 ± 6.14) 

 
Table 4. Correlation coefficients between amount of Cd, Pb and Zn extracted by EDTA and their “Total” content  

 

Element EDTA-extractable vs ‘total’ 
( n =9) 

Cd r =0.965 ** 
Pb r = 0.638  
Zn r = 0.976** 

** All correlations are significant at the 0.01 level (2-tailed) 
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4. Conclusions 
 

From this study, it is concluded that new and 
old tailings are alkaline and have high carbonate 
content. Also, the pH of old tailings is less than the 
New tailings, which could be because of H+ ions 
produced during mine tailing weathering.  

Chemical and mineralogical observations 
confirm that the new tailings are undergoing oxidation 
and weathering in the surface layers. However, the old 
tailings are sort of stabilized at least up to the sampling 
depth. The response of the elements to single 
extraction (EDTA 0.5mol/L) enabled us to estimate 
their potential mobility in the tailings.  

Based on single extraction, Zn has the least 
potential mobility in both types of tailings, whilst Cd 
in old tailings and Pb in new tailings have the highest 
potential mobility. Present study represents a first 
approach for a further environmental assessment of 
these environmentally hazardous tailings and possible 
reclamation efforts. 
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