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Abstract 
 
With anticipation of global warming and climate change, quantitative prediction of future precipitation trend is more important 
than ever. Global circulation models (GCMs) are widely used as the base for simulating climate change. However, due to their 
coarse resolution, researchers have been using various downscaling techniques to produce finer model for regional use. Recent 
advancements in metaheuristic algorithms have provided an alternative approach in downscaling. This paper introduces the 
application of a novel optimization algorithm, named as Cuckoo Search Optimization (CSO), to train Feedforward and Recurrent 
neural network to forecast long term precipitation. As benchmark, CSO was compared with Scaled Conjugate Gradient (SCG) and 
Levenberg-Marquardt (LM) methods. The models were evaluated through validation with historical precipitation; as well as their 
performance in Pearson correlation (r), root mean square error (RMSE), mean absolute error (MAE), and mean bias (MB). Results 
showed that CSO is capable of forecasting precipitation up to 90%~100% confidence level with an overall lower mean absolute 
error, root mean square error and mean bias; outperforming SCG and LM. Future precipitation forecasts revealed that the city will 
experience an increase of mean annual precipitation by 6~7% over Year 2071-2100. A regional climate model (RCM) with finer 
resolution was also investigated. Preliminary results revealed an underperformance of the regional climate model due to weaker 
correlation link between the predictors and historical precipitation.  
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1. Introduction 

 
Since the pre-industrial age, global land and 

sea surface temperature has been changing. 
Observations of land-ocean temperature anomaly as 
well as land precipitation change over the years 1901 
to 2010 (IPCC, 2013) have shown that these two major 
climate variables are in an unprecedented uptrend 
since the beginning of the 19th century.  The main 
factor of such changes to the climate system is the 
increase of carbon dioxide (CO2) concentration in 
Earth’s atmosphere. According to NOAA (2014), 
recent global CO2 concentration has reach 400ppm. 
(1ppm is equivalent to 7.81 gigatonnes of CO2). A safe 
level of ppm is 350 (Hansen et al., 2008; Rockström et 
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al., 2009). Based on observations over year 2004 to 
2013, CO2 concentration has been increasing at 2.0 
±0.1 ppm/year. This causes the atmosphere to become 
more proficient in trapping heat energy, therefore 
inducing further warming effect on Earth (Adger et al., 
2003), resulting in a positive feedback loop. 

With the global climate becoming 
exponentially warmer in recent years, local scale 
precipitation has been abrupt and holistic. This is 
because a warmer atmosphere is able to store more 
moisture and for a much longer duration of time. 
Hence precipitation of larger volume and drought of 
longer duration (prolonged wet and dry spells) are 
expected to become more frequent in the warming 
future. For example, the double occurrences of 100 
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ARI (average recurrence interval) flood tragedy that 
hit Malaysia unexpectedly in December 2006 and 
January 2007. A 100 ARI flood was previously 
estimated to occur only once in every 100 years. An 
event of this magnitude occurring twice is a clear sign 
of the impact of climate change on regional and local 
precipitation pattern. Though the change in climate 
can no longer be avoided, it can and must be managed 
to ensure sustainability of the ecosystem and well-
being of the community. A viable solution is to 
forecast future precipitation trend by taking into 
account the effect of climate change. Other solutions 
include elimination or minimization of fossil fuel 
consumption, commercialization of renewable energy, 
and commitment to reforestation, carbon capture, and 
carbon sequestration actions. The importance of 
having a quantitative forecast of long term 
precipitation is that it can serve as valuable insight for 
future water resource planning, stormwater 
management, early flood warning system, agricultural 
and industrial development, as well as tourism.  

Unfortunately, precipitation is one of the most 
difficult elements of the hydrologic cycle to forecast 
(French et al., 1992) due to its tremendous range of 
variability over spatial and temporal dimension. One 
of the prominent methods to predict future 
climatology is through Global Circulation Models 
(GCMs). GCMs are global scale numerical models 
that characterize the physical processes in the 
atmosphere, ocean and land surface (IPCC, 2011). 
Although GCMs have been acknowledged as the best 
representing model of atmospheric change in response 
to increased greenhouse gases, they are not suitable for 
regional climate modelling due to their coarse 
resolution as a result of large spatial coverage. 
Resolution of GCMs is in the order of 100km (Wilks, 
2012) which are larger than local atmospheric 
variables (typically 10 km or less). Therefore 
downscaling technique has been used extensively in 
climate studies to refine the resolution of GCMs.  

Artificial Neural networks (ANNs) or neural 
networks (NNs) have been researched on as an 
alternative to downscale GCMs. Also known as a 
‘black box’, NNs are capable of distinguishing 
inherent patterns from a large amount of data (Hall et 
al., 1999). French et al. (1992) had developed a NN 
model to forecast one hour ahead of rainfall intensity 
fields; Hewitson and Robert (1992) and Cavazos 
(1999) had implemented NN in downscaling daily and 
monthly precipitation in Mexico; Xiao and 
Chandrasekar (1997) had developed NN based 
algorithm to estimate rainfall from radar observation; 
Kuligowski and Barros (1998) experimented on using 
NN to forecast short term precipitation; Coulibaly and 
Dibike (2005 and 2006) applied temporal concept onto 
NN to downscale climate extremes; Hong et al. (2004) 
used NN as a system to classify clouds from remotely 
sensed imagery to predict precipitation; Ramírez et al., 
(2005) applied NN to forecast rainfall in São Paulo 
region; and Karamouz et al., (2009) had predicted long 
lead rainfall through NN. Moreover, NNs are proven 
by Hornik (1989), Musavi et al., (1994), Huang (1996) 

and Kak (1998) for their generalization and learning 
ability, even with incomplete data input. 

The objective of this paper is to implement a 
novel training method, named as Cuckoo Search 
Optimisation (CSO) into Feedforward NN and 
Recurrent NN to downscale GCM outputs; as well as 
evaluating their performance against widely used 
Scaled Conjugate Gradient (SCG) and Levenberg-
Marquardt (LM) method. CSO was chosen as it has 
been successful in solving structural optimization 
problems (Gandomi et al., 2011; Yang and Deb, 
2010); as well as forecasting flood events 
(Chaowanawatee and Heednacram, 2012). 
Unfortunately, thus far there has been no research on 
implementing CSO into NN to forecast long term 
precipitation. As such, the main contribution of this 
paper is the implementation of CSO into NN models 
and their application in forecasting long term future 
precipitation. 

The paper is structured in five sections. Section 
1 introduces the threat of climate change, and 
discusses the use of NN as a highly accurate 
forecasting tool for future climate. Section 2 will 
disclose the location and the data used in for this study, 
as well as research methodology. The cuckoo search 
algorithm as well as time lagged concept will be 
explained here. Performance indicators used to 
evaluate the accuracy of the models are also included 
in this section. Section 3 documents the methodology 
and workflow of the study. Section 4 compiles the 
results and discussions from the study. The 
conclusions of the study can be found in Section 5, 
along with recommendations for future research. 
 
2. Location of study and data 
 
2.1. Location of study 
 

The study area selected is Kuching City, 
located on 1033’N 110020’E. Like any other cities in 
Malaysia, Kuching is warm and humid all year round. 
The annual precipitation of the city is about 4000mm 
(based on observed annual rainfall data over Year 
1958 to 2010). Weather in Kuching is influenced by 
two distinct monsoons, namely the Northeast and 
Southwest monsoon.  

The former occurs from November to March; 
while the latter starts in May and end in September. 
April and October are known as the inter-monsoon 
period where the transition between the two monsoons 
takes place. Based on historical records, the monthly 
mean precipitation during Northeast monsoon is 
15.57mm (wetter season); while Southwest monsoon 
carries 7.11mm (drier season).  
 
2.2. Data 
 

NN models require input data for 
training/calibration to facilitate the model to 
distinguish inherent patterns amongst the input data 
and learn its characteristics. For this study, input data 
are monthly averages of GCM climatological 
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variables (predictors), and observed local monthly 
average precipitation data (predictand). The 
predictand data was obtained from Kuching Airport 
Rainfall Station. On the other hand, predictors were 
obtained from IPCC website which contains various 
GCM models generated by different meteorological 
institutes around the world. The GCM predictor data 
are only available in monthly means, and were 
downloaded from http://www.ipcc-data.org/. For this 
study, scenario A2 was selected as the predicting 
scenario for future precipitation.  

The scenario tells the story of a future with 
increasing CO2 emission, high population growth, less 
concern for rapid economic expansion, but slow 
technological advancement (CICS, 2006; IPCC, 
2011). ECHAM5 model from Max-Planck-Institut for 
Meteorology (MPI-M), Germany were selected to be 
used in this study as data from other models were 
incomplete and of coarser resolution. ECHAM5 
predictors have a resolution of 1.90 x 1.90, or 210 x 
210km (IPCC, 2011). Regional climate models 
(RCMs) variables from HadGEM3-AO with 
resolution of 50km were used to compare with 
variables from GCM outputs. The data can be 
downloaded from http://cordex-
ea.climate.go.kr/main/mainPage.do. 
 
3. Methodology 
 
3.1. Brief description on neural networks  
 

NNs were first inspired by studies of the neural 
system   of   biological    organism.    They   are    the  
mathematical   bio-mimicries  of   how   the   nervous  

system transmits information (input) to the brain for 
processing, in which the resulting response (output) is 
transmitted back to the relevant nerves for appropriate 
reactions. Two distinct NN types used in this study 
are: Feedforward neural network (FNN) and 
Recurrent neural network (RNN). FNN (illustrated in 
Fig. 1) is a simple, direct input to hidden layer and to 
output layer structure; whilst RNN (illustrated in Fig. 
2) introduces a loop inside the NN model, which can 
be considered as another weight within the hidden 
layer. Input, hidden, and output layers are connected 
by transfer functions.  

For this study, the hyperbolic tangent sigmoid 
equation is used as the transfer function, f1, to connect 
the input layer to hidden layer; while pure linear 
equation is used as transfer function, f2, to connect the 
hidden layer to output layer. Weights, Wi, and biases, 
Bi, are generated randomly during the initial iteration. 
NN models are trained iteratively to learn the 
connections or patterns between the inputs based on 
the training algorithm during each pass of iteration. 
After the initial iteration, the global error is calculated 
and propagated back to the network, in which the 
weights and biases are adjusted accordingly with the 
aim of reducing the overall error between the desired 
outputs and simulated data (Crane and Hewitson, 
1998). 

 
3.2. Cuckoo search optimization algorithm 
 

Cuckoo search algorithm (CSA) is a 
mathematical interpretation of the reproductive 
behaviour of ‘Cuckoo’ bird species. 
 

 

 
 

Fig. 1. Structure of FNN 
 

 
 

Fig. 1. Structure of RNN 
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Studies revealed that Cuckoos demonstrate a 
brood parasitic conduct in their breeding behaviour 
(Fossøy et. al., 2012; Rajabioun, 2011), in which 
Cuckoos (the parasite) will lay their eggs into the nests 
of other bird species (the host). In order to increase the 
survivability of their eggs, the Cuckoos’ eggs are 
modified to visually resemble the eggs of its hosts. The 
algorithm uses Lévy flight to define the search pattern 
of Cuckoos. Its advantage over most metaheuristic 
algorithm is that it is controlled by only two variables 
- the number of nests and discovery rate of the eggs by 
the host. CSA is available online at: 
http://www.mathworks.com/matlabcentral/fileexchan
ge/29809-cuckoo-search-csalgorithm.  

The pseudo code for CSA is as follows (Yang 
and Deb, 2009): 
- objective function, f(x), x = (x1,….,xd)T 
- generate initial population of n host nests, xi, 
(i=1,2,….,n) 
- while (t < Max Generation) or (stop criterion) 
- get a cuckoo randomly by Lévy flights and evaluate 
its fitness, Fi; 
- choose a nest among n (say, j) randomly 
- if (Fi > Fj), 
- replace j by the new solution; 
- End 
- a fraction (pa) of worse nests is abandoned and new 
ones are built; 
- keep best solutions; 
- rank and choose best solution; 
- End while 

The original CSA fixed two variables: fraction 
of worst nest to be abandoned, pa and the steps-size of 
Lévy flights, α as a constant. Valian et al., (2011) 
stated the drawback of fixing both variables: a small 
pa with large α will lead to poor performance, 
therefore requiring more iteration runs; while a large 
pa but small α will increase the speed of convergence 
but might fail to find the best solution. Hence, Valian 
et al., (2011) proposed Improved Cuckoo Search (ICS) 
algorithm where pa and α are imposed as variables. 
After each training iteration, pa and α will decrease 
according to Eqs.1-3. In their paper, Valian et al., 
(2011) have successfully proved that ICS performs 
better than CSA in terms of accuracy, mean and SD 
criteria. For this study, trial and error method was used 
by to determine the optimal value for both variables. 
It was found that during the initial iteration, the values 
of pa and α should be large enough in order to increase 
the generalization or diversification of the solution 
vectors. 
 

 (1) 

 

 (2) 
 

 (3) 

Time lagged neural network (TLNN) uses 
sliding time window method to produce supervised 
training examples (Donate and Cortez, 2011, and Kote 
and Jothiprakash, 2008). It is introduced into NNs 
because simply training NN using designated data 
from a constrained time interval will cause the 
network to lose its time dimensioning ability (Dibike 
and Coulibaly, 2006). Saharia and Bhattacharjya 
(2012) had implemented time lagged data feed into 
NN models to allow the network to learn temporal 
patterns of local precipitation trend through past data. 

In this study, the predictand period, t, starts 
from Year 1961 to 1990, totalling 30 years, was used 
as the input. The input sequence is shown in Eq. 4, 
where “obs(t)” denotes the current predictand data 
from Year 1961 to Year 1990; while “obs(t-1)” 
denotes the predictand data from Year 1960 to 1989, 
and henceforth. 
 
I= {obs(t), obs(t-1), obs(t-2), …, obs(t-4)} (4) 
 
3.4. Workflow 
 

Predictand and predictor data over Year 1961 
to 1990 was selected for model calibration. According 
to World Meteorological Organization, this 30-year-
period (Year1961-1990) is suitable for model 
calibration as it best describe the mean and variance of 
meteorological parameters that affects local weather. 
GCM predictors from scenario ‘20CM3’ which were 
produced based on observed CO2 emission from the 
20th century. Simulations for future climate change 
were conducted by feeding the trained network with 
GCM predictors from scenario A2, which are 
available from Year 2001 to 2100.  

In line with the objective of this paper, the 
proposed CSO was implemented in Feedfoward NN 
(named CSOFNN) and in Recurrent NN (named 
CSORNN). Its results will be benchmarked with 
simulation results by SCG and LM optimisation 
methods. Trained models were compared with the 
observed monthly precipitation for two decades: Year 
1991-2000 and Year 2001-2010, for the purpose of 
evaluating their performance. Both testing sets were 
not included as input during the training phase of the 
network. This is to ensure that the dataset used for 
validation are completely separated from the dataset 
used for training, hence removing credence doubt of 
generalization for the trained model (Elshorbagy et al., 
2010). 
 
3.5. Measuring the performance of models 
 
The performance of the models will be evaluated 
through several accuracy indicators, which are: root 
mean squared error (RMSE), mean absolute error 
(MAE), mean bias (MB), and correlation coefficient 
(R). RMSE is the square root of the sum of each 
squared errors over N (total number of outputs). MAE 
is the summation of absolute error values divided by 
N (Willmott and Matsuura, 2005). MB shows the 
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mean forecast error of forecast against observed 
values (Fekete et al., 2004; Ramirez, 2005). A positive 
value indicates overestimation and vice versa. The 
workflow of this study was as structured in Figure 3. 
The formula for each performance indicator and the 
ideal/optimal point are as follows (Elshorbagy et al., 
2010): 
 

 (5) 

 

 (6) 
 

 (7) 
 

 (8) 
 
where: Oi = Observed values; Pi = Predicted values; 

iO  = mean of observed values; iP  = mean of 
predicted values. 
 
4. Results and discussions 
 
4.1. Correlation analysis of GCM predictors 
 

Before training of NN was initiated, predictor 
data from Year 1961-2000 were normalized and 
examined for their relative correlation with observed 
precipitation data.  

Only highly correlated predictors will be 
selected for training as inputting low correlating 
predictors can induce undesired noise into the network 
(Gorp et al., 1998). GCM predictors were tested for 
their correlation coefficient, r and p value in order to 
determine their relative significance with respect to 
the observed precipitation data. A high ‘r’ value 
indicates that the predictor holds some degree of 
importance to the local climate. ‘p’ value indicates the 
coincidental probability of getting high ‘r’ value even 
if there is no correlation. For this study, any ‘p’ value 
higher than 0.05 is considered a false correlation. 

Predictors with p value higher than 0.05 were 
discarded from the training process. A negative value 
correlation only indicates that there is anti-correlation 
or an inverse relationship between the predictor and 
predictand. The correlation analysis revealed that 
ECHAM5 predictors are better correlated to locally 
observed rainfall than HadGEM3-RA predictors. 

The GCM predictors used for this paper were: 
hur200, hur850, ts, tas, ta200, ta500, and ta850. RCM 
predictors used are: va200, tas, and tasmax. Adding 
more predictors, in the case of RCM, reduces the 
accuracy of the trained NN model significantly. 

Table 1 and Table 2 show the predictors 
available from ECHAM5 and HadGEM3-RA models 
along with their correlation analysis. For this study, 
RCM predictors were not included to the NN models 
based on: i) the correlation analysis showed that 
HadGEM3-RA predictors do not correlate well with 
historical precipitation compared to ECHAM5 
predictors; ii) initial runs of NN model trained with 
HadGEM3-RA did not perform up to par with NN 
model trained with ECHAM5 predictors. 

 
 

 
 

Fig. 2. Workflow structure for this research 
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4.2. Model validation and performance analysis of 
NN models  
 

It is essential for calibrated NN models to be 
validated with two or more independent datasets 
(Elshorbagy et al., 2010; Trigo and Palutikor, 1999). 
The NN models for this study were named as 
CSOFNN, CSORNN, SCGFNN, SCGRNN, LMFNN, 
and LMRNN. All NN models were validated with 
observed precipitation data from two decades: Year 
1990-2000 (validation test 1); and Year 2001-2010 
(validation test 2). Additionally, the performance of 
each model was evaluated through four indicators – R, 
RMSE, MB, and MAPE. The model was trained for 
1000 iterations with its hidden nodes set to 100 and 
learning rate at 0.9 as this configuration provides 
better results without overtraining the model.  

Results from five trial runs were averaged and 
taken as the simulation results. For simplicity of 
comparison, the observed data are denoted as “OBS”; 
while “SIM” indicates simulated data. The line graph 
signifies the mean precipitation level during the base 
period. It was found that CSO models have the 
tendency of overestimating mean precipitation by 
approximately 20%, especially during the first half of 
the year. This overestimation fault was also present in 
the benchmarked models. It is capable of achieving 
Pearson’s correlation, r of 1.0~0.9; MAE of 0.1~0.5; 
RMSE of 0.06~2.18; and MB of -0.4~0.66. This can 
be attributed to the ability of CSO to conduct global 
and local search to find optimal results. This 
advantage which does not exist in the benchmarked 
models enables it to avoid being trapped in a local 

minima/maxima point, where NN might falsely 
identify it as optimal point. 

Fig. 4 shows the results from validation test 1 
and test 2. Fig. 5 shows the performance for CSO 
models and its benchmarks, SCG and LM models in 
which CSO showed better overall performances.  
 
4.3. Simulated future precipitation scenarios by 
CSOFNN and CSORNN 
 

Future precipitation scenarios simulated by 
CSOFNN are presented in this section. Fig. 6 shows 
the future precipitation forecasts for three decadal 
periods, namely from Year 2011-2040; Year 2041-
2070; and Year 2071-2100. The monthly percentage 
increase/decrease relative to the base period 
(Year1961-1990) is shown to provide a clearer 
perspective of future precipitation change. 

It should be noted that both CSOFNN and 
CSORNN simulations showed a higher mean 
precipitation for March and July. Both models seem to 
project higher precipitation trend when compared to 
the base period. In particular, the Southeast monsoon 
(which encompasses May, June, July, August and 
September), which is traditionally a drier season, was 
predicted to receive higher precipitation volume. 

 
5. Conclusions and recommendations  
 

This research was conducted on the intention 
of providing an alternate forecasting method and to 
explore higher accuracy methods in forecasting long 
term future precipitation in Malaysia. 
 

 
Table 1. ECHAM5 GCM model predictors and their correlation, r and p value 

 

 
 

Table 2. HadGEM3-RA RCM model predictors and their correlation, r and p value 
 

 
 

Predictor r p Predictor r p Predictor r P

pr -0.151 0.001 uas 0.024 0.593 ua500 0.001 0.68
hur850 -0.544 0 vas -0.275 0 ua200 0.075 0.1
hur500 -0.114 0.013 ta850 0.614 0 psl 0.067 0.143
hur200 -0.544 0 ta500 0.583 0 va850 -0.350 0

ts 0.624 0 ta200 0.545 0 va500 0.134 0.03
tas 0.624 0 ua850 0.171 0 va200 0.077 0.09

Predictor r p Predictor r p Predictor r P

tas -0.473 0 rsds -0.396 0 ta200 0.052 0.224
tasmax -0.447 0 rsus 0.395 0.071 vas -0.425 0
tasmin -0.360 0 rsut 0.402 0 mrro 0.246 0

pr 0.377 0 ua850 -0.078 0 mrros 0.241 0
psl -0.071 0.1 ua500 -0.225 0 hfls -0.318 0

huss 0.008 0.86 ua200 0.240 0 hfss -0.223 0
clt 0.265 0 uas 0.185 0 sfcWind -0.217 0

rlus -0.443 0 va500 0.292 0 sfcWindmax -0.210 0
rlut -0.232 0 va200 0.525 0
rsdt -0.232 0 ta500 0.165 0
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(a) (b) 

 
Fig. 3. Validation test 1 and 2 results for CSOFNN and CSORNN for two decadal period: 

Year1991-2000 (left); and Year2001-2010 (right) 
 
 

 
 

Fig. 4. Performance of CSO, SCG and LM optimization methods over Year 1991-2000 for a) FNN model, c) RNN model; as well 
as over Year 2001-2010 for b) FNN model, and d) RNN model 
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Fig. 5. Forecasts of long term future precipitation using ECHAM5 predictors by 6a) CSOFNN; and 6b) CSORNN for Year2011-

2040, Year2041-2070, and Year2071-2100 
 
 

The paper implemented cuckoo search 
algorithm into NN as a training function, named CSO, 
to downscale GCM outputs to climate parameters to 
local scale. CSO algorithm was trained in FNN and 
RNN. As benchmark, CSO was compared with 
conventional NN training method – SCG and LM. 
Time-lagged concept was introduced into the NN 
models through inputting antecedent data, show NN 
performance trained with lagged and no lag data hence 
improving the accuracy of forecasts. Simulated results 
were validated with historical mean monthly 
precipitation data for two decadal periods: Year 1991-
2000 and Year 2001-2010. RCM predictors with finer 

resolution (50km) were also selected for NN training. 
Preliminary results showed NN model trained using 
RCM predictors did not performed better than those 
trained with GCM predictors. This can be attributed to 
a weaker link as revealed through correlation analysis. 
The comparison between CSO, SCG and LM 
optimization methods proved that CSO has better 
performance. The simulated forecasts by CSOFNN 
and CSORNN indicate slightly higher mean 
precipitation when compared to the base period. The 
former predicted an average increase of 5%~7%; 
while the latter predicted 3%~4% increase in mean 
precipitation over the century. The forecasts also 
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provide an insight to a wetter Southwest monsoon 
season, especially during June, July and August. As 
recommendation for future research, other 
metaheuristic optimization algorithms can be 
implemented in ANN to forecast precipitation. GCM 
predictors from other meteorology model can be used 
by ANN to forecast future precipitation in order to 
further confirm the general trend of changes. Other 
scenarios, such as scenario A1, B1, and B2 can be used 
to simulate future precipitation. This will help in 
establishing a general range of precipitation variance 
in the future. 
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