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Abstract 
 
In this study major factors affecting the phenolation process of lignosulfonate (LS) waste liquor (recovered from pulp and paper 
industry) were optimized in order to improve LS substitution for replacing petroleum-based phenols during phenolic resin 
manufacturing.  Four different parameters, namely phenol/lignosulfonate ratio, time, temperature and lignosulfonate waste liquor 
concentration, were varied in an experimental program having as response function the reaction yield. Response Surface 
Methodology (based on central composite or Box-Behnken designs) and Artificial Neuronal Network were applied for establishing 
the process parameters impact on phenolation yield.  
The developed mathematical models presented a high accuracy being able to adequately estimate the phenol conversion and adduct 
formation. Yields over 80 % were obtained when lignosulfonate waste liquor with a concentration in lignosulfonate between 35 % 
and 45 % was used in a ratio of 1:1 with phenol and the reaction was conducted at temperatures in a range of 100 °C – 110 °C for 
a period of time of 3.0 – 3.5 hours. 
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1. Introduction 

 
Phenolic resins, known as the first polymer 

synthetized at industrial level, are thermosetting resins 
that form a three-dimensional network structure 
through covalent bonds (Shudo et al., 2017). 
Characterized as possessing high aromatic density, 
very good thermal, chemical and mechanical stability 
and strength, high thermal insulating properties 
(Martin et al., 2006), and solvent resistance (Foyer et 
al., 2016), they are widely used in the aerospace, 
automotive, construction, and semiconductor 

∗ Author to whom all correspondence should be addressed: e-mail: lgavrila@ub.ro; Phone: +40 234 524 411 ext. 145; Fax: +40 234 580 170 

industries (Shudo et al., 2016). These types of resins 
are successfully employed to fabricate a large variety 
of products from electric laminates to carbon foams 
(Zhao et al., 2009), adhesives (Roslan et al., 2014; 
Yang and Frazier, 2016), molding compounds (Hirano 
and Asami, 2013), acid-resistant coatings 
(Biedermann and Grob, 2006a, 2006b), fiber-
reinforced composites (Bu et al., 2014; Li et al., 2016; 
Wu et al., 2017) and binders (Wang et al., 2017). 

There are two types of phenolic resins 
commonly resulting from a synthesis process using 
two reagents: phenol and formaldehyde. When an 
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excess of formaldehyde and an alkaline catalyst are 
used resol phenolic resin is obtained while an excess 
of phenol and acidic pH conditions lead to novolac 
phenolic resin (Foyer et al., 2016; Noparvar-
Qarebagh, 2016). In the last period, the rising cost and 
the predictable upcoming insufficiency of 
petrochemicals have stimulated the necessity to 
evaluate the possibility of replacing the phenol with 
other products (Greco et al., 2016). Dedicated 
researches conducted to the conclusion that 
lignosulfonates (compounds from pulp and paper 
wastewaters known as chemically stable, resistant to 
biological degradation, and difficult to separate by 
conventional wastewater treatment methods (Zulfikar 
et al., 2012)) constitute one of the best alternatives (Hu 
et al., 2012; Perez et al., 2007). Even though good 
results were reported when non-modified 
lignosulfonates were incorporated in phenolic resin, 
their reactivity is improved if the chemical structure is 
modified (Alonso et al., 2001), one way to accomplish 
this structure change being represented by the 
phenolation reaction. According to data reported by 
Alonso et al. (2005) and by Hu et al. (2011), the 
mentioned method involves: benzyl-hydroxyl group 
protonation; dehydration at the α-carbon in order to 
give a carbonium ion; electrophilic attack by 
carbonium ion of the phenol molecule leading to a 
phenol condensation product; incorporation of ortho 
or para-phenyl substituent to the α-hydroxyl groups of 
the propane side chains and adduct fragmentation and 
insures, in the same time, a decrease of molecular 
weight supporting a more appropriate incorporation of 
phenolation products to phenolic resins.       

Considering the information previously 
presented, this paper is focused on the optimization of 
the main factors affecting the lignosulfonate 
phenolation process. To this purpose, lignosulphonate 
(LS)  from spent sulphite liquor resulting from pulp 
and paper industry and phenol (P) were used and four 
different parameters: P/LS ratio, time, temperature 
and LS concentration were varied in an experimental 
program having as response function the reaction 
yield. In order to obtain the optimal values for the 
above-mentioned parameters two different 
methodologies were employed: Response Surface 
Methodology (RSM) and Artificial Neural Network 
(ANN).  

RSM is a widely used collection of 
mathematical and statistical techniques which gives, 
among others, a second order polynomial equation 
able to accurately describe the experimental data 
behavior (Xiang et al., 2015). It applies for response 
functions influenced by different variables (Koricic et 
al., 2016) and has as main aim to simultaneously 
optimize the levels of these variables in order to 
achieve the best results (Almeida Bezerra et al., 2008; 
Shirneshan et al., 2016). In the present study, two 
second-order symmetrical RSM designs were 
developed: central composite design (CCD) and Box-
Behnken design (BBD) the difference between them 
being given by  the  selection of   experimental  points  

and the number of runs. ANN is an assembly of simple 
computational units interlinked by a system of 
connections (Cheng and Titterington, 1994) which 
implement algorithms that attempt to achieve a 
neurological related performance including learning 
and making generalization from similar situations 
(Cemek et al., 2013; Meireles et al., 2003; Rajakovic-
Ognjanovic et al., 2014).  

The simplest ANN requires three layers (input, 
hidden and output), activation function, learning 
technique and weights. In terms of layers, the input 
one receives information and passes it for processing; 
the hidden layer processes the information offered by 
the input layer while the output layer receives 
processed information from hidden layers and give the 
results. The activation function affects the neural 
network behavior and scales the output into an 
adequate range. The learning system adapts itself to 
various changes insuring that during the training phase 
weights can be modified in response to input/output 
chances (Dharwal and Kaur, 2016). For this paper, the 
experimental acquired data were used to build and 
train an artificial neural network in order to decide if 
it is more appropriate than RSM for establishing the 
optimal values for the parameters affecting the LS 
phenolation reaction.  

The accuracy of the resulted mathematical 
models was investigated by applying several different 
tests: sequential model sum of squares, lack of fit test 
and Analysis of Variance (ANOVA) test.  
 
2. Material and methods 

 
2.1. Reagents 

 
Phenol used for the experiments was of 

analytical purity and was purchased from Sigma 
Aldrich (Redox Lab Supplies Bucharest, Romania). 
Lignosulfonate waste liquor (with 50 wt % LS) was 
obtained from a local pulp and paper industry. All the 
solutions were prepared only with demineralized 
water. 

 
2.2. Phenolation reaction 

 
Following the experimental setup detailed in 

Table 1, Table 2 and in Table 3 from the section 
dedicated to RSM modelling, different proportions of 
lignosulfonate waste liquor of different concentrations 
and 50 g of pure phenol were solubilized in 500 mL of 
demineralized water and introduced in a 1 L glass 
laboratory reactor equipped with a thermometer and a 
reflux condenser. Sulphuric acid (0.5 wt % reported at 
the phenol quantity) was added in order to insure an 
acidic media.  

The resulted mixtures were heated under 
stirring on a Nahita Blue 692 magnetic heating plate 
(Auxilab, Spain) to various temperatures for different 
periods of time according to the established 
exploratory plan. At the end, the remaining water was 
removed by atmospheric pressure distillation. 
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Table 1. Independent variable and levels used for CCD and BBD 
 

Parameter Levels of variation 
CCD BBD 

A (P/LS ratio) 0.5; 1; 1.5; 2; 2.5 1; 1.5; 2 
B (time, hours) 2; 2.5; 3; 3.5; 4 2.5; 3; 3.5 

C (Temperature, °C) 80; 90; 100; 110; 120 90; 100; 110 
D (LS concentration, %) 35; 40; 45; 50 35; 40; 45 

 
Table 2. CCD exploratory plan for LS phenolation reaction 

 

Run A 
P/LS ratio 

B 
Time, 

t [hours] 

C 
Temperature, 

T [˚C] 

D 
Concentration, 

LS [%] 

Yield, η [%] 

1st trial 2nd trial 3rd trial 

1 1 2.5 90 35 68.80 67.29 67.63 
2 2 2.5 90 35 22.11 21.42 22.49 
3 1 3.5 90 35 69.03 71.17 67.93 
4 2 3.5 90 35 38.33 41.05 37.87 
5 1 2.5 110 35 83.71 82.71 82.20 
6 2 2.5 110 35 42.15 43.67 41.01 
7 1 3.5 110 35 86.02 86.88 85.85 
8 2 3.5 110 35 44.32 46.71 44.19 
9 1 2.5 90 45 67.60 67.40 66.79 

10 2 2.5 90 45 21.22 20.99 21.45 
11 1 3.5 90 45 68.87 68.04 70.04 
12 2 3.5 90 45 31.30 31.99 31.27 
13 1 2.5 110 45 78.89 76.44 80.63 
14 2 2.5 110 45 45.70 45.20 44.92 
15 1 3.5 110 45 86.10 82.48 86.87 
16 2 3.5 110 45 47.50 46.55 46.98 
17 0.5 3 100 40 85.52 86.97 84.92 
18 2.5 3 100 40 26.53 26.98 26.34 
19 1.5 2 100 40 43.21 43.51 43.12 
20 1.5 4 100 40 52.30 51.10 52.09 
21 1.5 3 80 40 40.87 40.01 40.34 
22 1.5 3 120 40 59.11 57.45 59.88 
23 1.5 3 100 30 58.25 56.85 58.54 
24 1.5 3 100 50 60.65 58.77 60.95 
25 1.5 3 100 40 54.30 54.73 54.46 
26 1.5 3 100 40 55.44 55.83 55.50 
27 1.5 3 100 40 54.20 53.66 54.04 
28 1.5 3 100 40 52.98 54.20 52.77 
29 1.5 3 100 40 53.93 53.66 53.66 
30 1.5 3 100 40 56.10 56.44 56.83 
31 1.5 3 100 40 53.77 54.09 54.36 

2.3. Free phenol determination 
 
A Varian 3400 gas chromatograph (Varian, 

Inc. USA) with flame ionization detector and helium 
as carrier gas and equipped with an HP-INNOWax 
capillary column (0.2 μm thickness, 50 m length, 0.2 
mm internal diameter) was used for free phenol 
determination from every reaction. The method 
described by Alonso et al. (2005) was followed. 

 
2.4. Reaction yield calculation 

 
The phenolation reaction yield was established 

as ratio between the amount of phenol registered at the 
end of reaction and that introduced in the reactor and 
the results were expressed as percentages. 

 

2.5. RSM modelling 
 
Two different RSM designs (central composite 

design (CCD) and Box-Behnken design (BBD)), 
chosen due to the fact that they require a reduced 
number of experiments, were evaluated with Design-
Expert 7.0 software in order to describe linear, 
quadratic, and interactions occurring in the 
mathematical model developed on an exploratory plan 
including various levels of variation for four different 
parameters considered as affecting the lignosulfonate 
phenolation reaction. The variation of these factors is 
given in Table 1. 

The quadratic model for predicting the optimal 
values for the studied parameters is shown by the Eq. 
(1): 
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where Y is the response function (phenolation reaction 
yield), Ai, Aii and Aij (i≠j) are the regression 
coefficients of variables for the linear, quadratic and 
interaction terms, Xi is a code for the four parameters 
(A, B, C, D) and Xj is a code for the combinations of 
the parameters (AB, AC, AD, BC, BD, CD). 

 
2.6. ANN modelling 

 
Data used for RSM development were 

considered as input and output data for a three-layered 

feed forward momentum ANN. A varying number of 
neurons (2 – 8) in the hidden layer was tested with 
NeuroSolutions 6.0 software. Four input nodes, 2 – 8 
hidden neurons, one output node, 3000 epochs, and 
momentum learning rule were employed for ANN 
training.  
 
3. Results and discussion 

 
3.1. RSM modelling 

 
Table 2 and Table 3 show the runs for CCD and 

BDD respectively along with reaction yields 
registered for each of them. All the experiments were 
conducted in triplicate

 
Table 3. BBD exploratory plan for LS phenolation reaction 

 

Run A 
P/LS ratio 

B 
Time, 

τ [hours] 

C 
Temperature, 

t [˚C] 

D 
Concentration, 

LS [%] 

Yield, η [%] 

1st trial 2nd trial 3rd trial 

1 2 2.5 100 40 38.50 38.73 38.92 
2 2 3 90 40 31.29 30.95 30.88 
3 1 3 100 35 81.60 80.46 82.17 
4 1 3 90 40 66.12 64.33 65.72 
5 2 3 100 35 41.56 41.73 41.77 
6 1.5 3.5 100 35 57.67 56.57 58.59 
7 1 2.5 100 40 78.33 80.05 78.02 
8 1 3 110 40 86.09 87.55 85.92 
9 1.5 3.5 110 40 61.33 62.13 61.23 

10 1.5 3 110 45 60.11 61.01 59.99 
11 1.5 3.5 90 40 47.53 48.05 47.01 
12 1 3.5 100 40 83.12 82.46 82.46 
13 1.5 3 90 35 44.12 44.83 43.72 
14 1.5 2.5 100 45 53.53 54.39 53.16 
15 1.5 2.5 110 40 61.02 62.00 61.08 
16 1 3 100 45 81.81 82.71 80.42 
17 1.5 3 100 40 55.70 55.64 55.09 
18 1.5 3 100 40 56.10 55.71 55.09 
19 1.5 2.5 100 35 53.40 53.13 52.65 
20 1.5 3 110 35 58.21 58.44 57.69 
21 1.5 3.5 100 45 57.78 57.95 57.90 
22 1.5 2.5 90 40 28.11 27.52 27.60 
23 2 3 110 40 33.96 33.38 33.59 
24 2 3 100 45 27.33 26.81 27.25 
25 2 3.5 100 40 30.14 29.84 30.05 
26 1.5 3 100 40 55.44 54.89 55.38 
27 1.5 3 100 40 52.98 52.56 52.93 
28 1.5 3 90 45 26.18 26.22 25.84 
29 1.5 3 100 40 53.77 53.55 52.86 

 
The CCD and BBD developed mathematical models are expressed by Eqs. (2) and (3) given below: 

 
 

2222 54.142.038.168.070.004.089.0
31.039.020.110.065.748.210.1849.54

DCBADCDBCB
DACABADCBAYCCD

⋅+⋅+⋅−⋅+⋅⋅+⋅⋅−⋅⋅−

−⋅⋅+⋅⋅+⋅⋅+⋅−⋅+⋅+⋅−=

  (2) 
 

2222 49.531.098.396.4005.078.461.3
32.429.348.278.906.286.2260.5449.54
DCBADCDBCB

DACABADCBAYBBD

⋅−⋅+⋅+⋅+⋅⋅−⋅⋅−⋅⋅−

⋅⋅−⋅⋅−⋅⋅−⋅+⋅+⋅−⋅+=

   (3) 
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The adequacy of the second order polynomial 
equations obtained by RSM modelling was tested by 
the mean of various tests: standard deviation (SD) 
which quantifies data dispersion; sum of squares (SS) 
and mean of square (MS) which measures the 
deviation from the mean value; correlation coefficient 
(R2) which considers in the same time linear, quadratic 
and interaction effects; the adjusted coefficient of 
determination (adj. R2) which estimates only square 
and interaction effects between two input variables; 
the predicted coefficient of determination (pred. R2) 
which studies the effects for software generated 
values; the predicted residual sum of squares (PRESS) 
which measures the fit of a model to observations 
samples not involved in model assessment; degrees of 
freedom (df) which reveals the number of values that 
may vary independently; F value and p value which 
show the probabilities of predicting results similar to 
the experimental data when the null hypothesis is true; 
lack of fit test and pure error which illustrate the 
differences between the mathematical model and the 
experimental data.  

The analysis of these tests results (Table 4 and 
Table 5) reveals that the mathematical models 
developed by RSM describe accurately the behavior 
of data recorded for LS phenolation reaction yield. For 
both of them, R2, adj. R2, Pred. R2 presented values 
higher than 0.97, 0.94 and 0.84 respectively.  

The significance of coefficients found for the 
two RSM established second order polynomial 
equations indicate that the more important parameters 
affecting the LS phenolation process are represented 
by the P/LS ratio and temperature (p value < 0.0001) 
and that the time and LS concentration have a lower 
influence. The interactions between the factors do not 
affect the reaction yield in a considerable manner.    

The “Lack of Fit” results sustain also the RSM 
models accuracy since the chances that the large 
values registered for this test could occur due to noise 
are under 1 %.  

Fig. 1 and Fig. 2 depict the response surfaces 
for reaction yield of the first CCD and of the first BBD 
sets of runs. Since, according to data given in Table 3 
and in Table 4, values recorded for the second and the 
third set of runs both for CCD and BBD present a high 
similarity, they were not pictured here. 

Fig. 3 and Fig. 4 indicate that LS phenolation 
yields predicted by CCD and BBD mathematical 
models are greater than 80 % for a P/LS ratio set at 1. 
In the case of CCD, the reaction yield reached 82 % 
when the used LS has a concentration of 45 %, and the 
reaction is conducted at a temperature of 110 °C for 3 
hours. For BBD, the reaction yield raised at 86 % 
when LS concentration was of 35 %, and the reaction 
took place at 100 °C for 3.5 hours. In other words, the 
analysis of these data shows that a reaction with a 
more important concentration of LS requires a higher 
temperature and a shorter period of time. On the 
contrary, a greater reaction yield can be reached when 
a lower concentration of LS is involved and the 
reaction is conducted at a lower temperature for a 
longer time. These results are similar with that 
reported by Alonso et al. (2005) and sustained by the 
fact that the supplementary experiments carried out in 
the optimal conditions released by both RSM designs 
the reaction yields were between 82 % and 85 %. The 
observed differences between CCD and BBD results 
can be explained by the ability of BBD to ignore the 
extreme values chosen for the tested variables 
presenting, in the same time, the possibility to obtain 
a reliable mathematical model from fewer 
experiments. 

 
Table 4. CCD mathematical model accuracy tests results 

 
Source - SD - R2 Adj. R2 Pred. R2 PRESS 

Quadratic Model - 4.18 - 0.9734 0.9486 0.8497 1484.92 

Source Coefficient  
Estimate - SS df MS F value p-value 

Prob > F 
Model - - 9614.512 14 686.7508 39.2496 < 0.0001 

Intercept 54.49 1.71 - - - - - 
A-P : LS ratio -18.10 0.85 9614.51 14 686.75 39.25 < 0.0001 

B-time 2.48 0.85 7861.55 1 7861.55 449.31 < 0.0001 
C-temperature 7.65 0.85 147.36 1 147.36 8.42 0.0109 

D-LS concentration -0.10 0.85 1404.69 1 1404.69 80.28 < 0.0001 
AB 1.20 1.05 0.26 1 0.26 0.01 0.9049 
AC 0.39 1.05 23.16 1 23.16 1.32 0.2679 
AD 0.31 1.05 2.47 1 2.47 0.14 0.7122 
BC -0.89 1.05 1.51 1 1.51 0.09 0.7732 
BD -0.04 1.05 12.80 1 12.80 0.73 0.4059 
CD 0.70 1.05 0.02 1 0.02 1.16E-003 0.9733 
A2 0.68 0.80 7.94 1 7.94 0.45 0.5108 
B2 -1.38 0.80 12.80 1 12.80 0.73 0.4059 
C2 0.42 0.80 52.57 1 52.57 3.00 0.1035 
D2 1.54 0.80 4.94 1 4.94 0.28 0.6031 

Residual - - 64.99 1 64.99 3.71 0.0731 
Lack of Fit - - 262.46 15 17.50 - - 
Pure Error - - 256.25 10 25.62 20.64 0.0019 
Cor Total - - 6.21 5 1.24 - - 

 775 



 
Simion et al./Environmental Engineering and Management Journal 17 (2018), 4, 771-781 

 
Table 5. BBD mathematical model accuracy tests results 

 
Source - SD - R2 Adj. R2 Pred. R2 PRESS 

Quadratic Model - 4.231647 - 0.970581 0.941161 0.833244 1421.01 

Source Coefficient  
Estimate - SS df MS F value p-value 

Prob > F 
Model - - 8270.775 14 590.7696 32.99129 < 0.0001 

Intercept 54.4917 1.7077 - - - - - 
A-P : LS ratio 54.6 1.89 6269.5840 1 6269.5840 350.1223 < 0.0001 

B-time -22.86 1.22 50.7585 1 50.7585 2.8346 0.1144 
C-temperature 2.06 1.22 1147.9760 1 1147.9760 64.1083 < 0.0001 

D-LS concentration 9.78 1.22 74.1027 1 74.1027 4.1382 0.0613 
AB -2.48 1.22 43.2306 1 43.2306 2.4142 0.1425 
AC -3.29 2.12 74.8225 1 74.8225 4.1784 0.0602 
AD -4.32 2.12 52.1284 1 52.1284 2.9111 0.11 
BC -3.61 2.12 91.2980 1 91.2980 5.0985 0.0404 
BD -4.78 2.12 0.0001 1 0.0001 0.0000 0.9981 
CD -5.00E-03 2.12 98.4064 1 98.4064 5.4955 0.0343 
A2 4.96 2.12 102.7787 1 102.7787 5.7396 0.0311 
B2 3.98 1.66 0.6107 1 0.6107 0.0341 0.8561 
C2 0.31 1.66 195.6399 1 195.6399 10.9254 0.0052 
D2 -5.49 1.66 2.2439 1 2.2439 0.1253 0.7286 

Residual - - 250.6957 14 17.9068 - - 
Lack of Fit - - 245.2168 10 24.5217 17.9027 0.0068 
Pure Error - - 5.4789 4 1.3697 - - 
Cor Total - - 8521.4700 28 - - - 
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Fig. 1. 3D response surfaces for CCD phenolation reaction yield 
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Fig. 2. 3D response surfaces for BBD phenolation reaction yield  
 

 
 

Fig. 3. LS phenolation yield predicted by CCD mathematical model 
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Fig. 4. LS phenolation yield predicted by BBD mathematical model 
 
3.2. ANN modelling 
 

A feed forward multilayer perceptron’s ANN 
based on data included in Table 2 and in Table 3 was 

established using as input the values of the four 
parameters influencing the LS phenolation reaction 
(P/LS ratio, time, temperature and LS concentration) 
and as output the reaction yields registered in triplicate 

 779 



 
Simion et al./Environmental Engineering and Management Journal 17 (2018), 4, 771-781 

 
for CCD and BBD. This network was chosen due to 
the fact that it is easy to use, and it is recognized as 
being able to approximate any input/output map. 70 % 
of the input data were utilized for network training 
while the remaining 30 % were equally divided 
between the cross validation and testing steps. Tests 
conducted with different number of hidden neurons 
revealed that when a large number of neurons are 
considered, the ANN requires a more important period 
of time to train itself while too few neurons are not 
sufficient for an appropriate training process. The best 
results were attained with a hidden layer of 3 neurons: 
the first one with ten, the second one with five and the 
third one with four process elements. The developed 
ANN is given in Fig. 5.   

As it can be remarked from Fig. 6, the mean 
squared error follows a similar path both for training 
stage and for cross validation at 3000 epochs reaching 
minimum final values of 0.0283 and of 0.0388 
respectively. 

 

 
 

Fig. 5. Schematic representation of the (4 – 3 – 1) neural 
network (with four neurons in the input layer, three in the 

hidden layer, and one in the output layer) 
 

 
 

Fig. 6. Comparison between mean squared error (MSE) 
obtained in training and in cross validation ANN processes 

 
The analysis of experimental recorded LS 

phenolation yields and of those predicted by ANN 
(Fig. 7) reveals no significant differences. The 
selected ANN helps to conclude that the use of all 
RSM data can provide an accurate model 
characterized by a MSE of only 5.573, a minimum and 
a maximum absolute error of 0.0222 and of 7.9258 and 
by a very high correlation coefficient with a value of 

0.9912 suggesting a very good fit with the 
experimental data.  

 

 
 

Fig. 7. Evolution of experimental and ANN predicted yield 
LS phenolation 

 
4. Conclusions 

 
This study was dedicated to the optimization 

process of the main parameters (phenol – 
lignosulfonate ratio, time, temperature, lignosulfonate 
concentration) recognized as affecting the phenolation 
reaction yield conducted between lignosulfonate 
waste liquor and phenol.  

Two powerful techniques (Response Surface 
Methodology with Central Composite Design and 
Box-Behnken Design and Artificial Neural Network) 
were employed in order to establish the experimental 
program and to analyze the obtained data. Yields 
higher than 80 % were recorded when the phenolation 
was conducted with equal amounts of phenol and 
lignosulfonate, the lignosulfonate had a concentration 
varying from 35 % to 45 % and a temperature between 
100 °C and 110 °C was insured for more than 3 hours.  

Mathematical models generated by RSM 
(CCD and BBD) were able to accurately estimate the 
phenol conversion and adduct formation and their 
adequacy was confirmed by the high similarity 
existing between the experimental and model 
predicted data revealed by ANN.  
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