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Abstract 
 
A polycrystalline CeO2-ZnO catalyst was prepared by using a hydrothermal procedure in order to improve the structural properties. 
This polycrystalline material was then used to remove organic pollutants from aqueous solutions by the means of photocatalysis. 
The structural, morphological and optical properties of as-prepared materials were characterized by several techniques, such as 
UV-visible spectroscopy, SEM, FTIR, XRD. The SEM analysis shows that the crystallite size sample varies in the range of 0.3-
2µm. The photocatalytic activity under UV irradiation was estimated by measuring the degradation rate of aqueous solutions of 
methylene blue (MB, 0.01mM/L) and 4’-(1-methyl-benzimidazoyl-2)-phenylazo-2”-(8”-amino-1”-hydroxy-3”, 6”-disulphonic)-
naphthalene acid (PMBH, 0.05mM/L). The effect of catalyst content on the photocatalytic activity was also studied. The results 
confirm that this material can be potentially applied for the treatment of water contaminated by organic pollutants.  
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1. Introduction 

 
Recently, the need to keep the environment 

clean and safe has led to looking for efficient, and 
economically convenient solutions, such as 
semiconductor materials. Semiconductor materials 
have become particularly attractive to the scientific 
community, and are used in various fields, such as 
electronics, environmental remediation techniques 
(i.e.catalysts or photocatalysts (Favier et al., 2016; 
Fujishima and Zhang, 2006; Jesudoss et al., 2016; 
Nascimento et al., 2014; Paz, 2006; Reddy et al., 2015) 
or for conversion of solar energy (Bhosale et al., 2016; 
Fujishima and Honda, 1972; Lira-Cantu and Krebs, 
2006).  

Thus, when a semiconductor is irradiated with 
energy close to, or greater than the band gap energy 
(Eg), electrons   are   generated  in the conduction band  
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(e-) and holes in the valence band (h+). These electric 
charges are mobile and are able to initiate various 
redox reactions on the surface of the catalyst, but they 
have the tendency to recombine quickly, thus 
dissipating the absorbed energy. Therefore, a 
semiconductor photocatalytic activity is dependent on 
the competition between the transfer of electric charge 
on its surface and recombination of electron–hole 
pairs (Faisal et al., 2013; Kaviyarasu et al., 2017). For 
many materials with the same chemical composition, 
the structural, catalytic and electronic properties may 
be completely different, depending on how these are 
processed (Jafari et al., 2016). 

Zinc oxide and cerium (IV) oxide have been 
and still are intensively studied due to their versatility 
and multiple applications (Faisal et al., 2013; 
Nascimento et al., 2014). ZnO crystallizes in a 
hexagonal or cubic system, but the hexagonal form is 
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more stable. It is a semiconductor compound with the 
ionicity on the border between the ionic and covalent 
semiconductor. The chemical bond becomes partially 
ionic due to electronic charge transfer from Zn to O. 
In this way, the Coulomb interaction between the ions 
increases, hence the width of the band gap material 
also increases. One of its most important features is 
the polar surface that causes a series of specific 
properties, such as spontaneous polarization and 
piezoelectricity, leading to many applications in 
electronics, gas sensors or photocatalysis (Amira et 
al., 2017). ZnO is cheap, it can be recovered from 
waste products (Jule et al., 2016; Lopez et al., 2017) 
and has a low toxicity (Xia et al., 2008) being used as 
an ingredient in numerous products such as: drugs, 
cosmetics, photocatalyst, additive for textiles and 
paper (Atchudan et al., 2017; Faisal et al., 2013; 
Mirzaei and Darroudi, 2017). The properties of zinc 
oxide can be considerably improved by doping it with 
the various components such as transitional metal ions 
or oxides (Choi et al., 1994; Kannadasan et al., 2014; 
Lira-Cantu and Krebs, 2006; Mogensen et al., 2000). 
In the present paper, we focused on the study of a 
CeO2-ZnO polycrystalline mixture. 

 
2. Experimental 

 
2.1. Material and methods 

 
The chemicals used in this study were 

Zn(CH3COO)2 x2H2O, Ce(NO3)3 x6H2O, citric acid 
(all 99.99% purity, supplied from Sigma-Aldrich). 
The reagents were first dissolved in distilled water, 
and then mixed under vigorous stirring with the 
appropriate amounts of citric acid, at 333 K, for two 
hours, the obtained yellow precipitate was separated 
by decantation, then was washed and transferred into 
a furnace for 3 hours at 773 K, to remove the organic 
phase (Apostolescu et al., 2015). Other researchers 
have observed that Ce3+, heated over 773 K passes in 
Ce4+ (Nagy and Dekany, 2009). The yellow-white 
powders were used to establish the photocatalytic 
activity, without other treatments. Two samples were 
prepared, first named a1, starting from 1 mmol 
Ce(NO3)3 x6H2O and 9 mmol Zn(CH3COO)2 x2H2O 
and the second sample, named a2 starting from 3 

mmol Ce(NO3)3 x6H2O and 7 mmol Zn(CH3COO)2 
x2H2O. 

The organic dyes tested were methylene blue- 
MB (Chemical Company) and 4’-(1-methyl-
benzimidazoyl-2)-phenylazo-2”-(8”-amino-1”-
hydroxy-3”,6”-disulphonic)-naphthalene acid 
abbreviated PMBH (synthesized in our laboratories) 
(Cernatescu et al., 2015) and are presented in Table 1. 

 
2.2. Characterization methods 

 
The phase composition of all powders and 

obtained samples were identified by the X-ray 
diffraction method (Philips PW 1840 diffractometer) 
under the following conditions: 40 kV, 30 mA, 
monochromatic CuKα radiation (λ = 0.15418 nm) 
over a 2θ range from 10 to 70 º. The FTIR spectra were 
recorded on a Perkin Elmer Spectrum 100, resolution 
2 cm−1 using 32 scans in the range 4000 - 400 cm−1; 
all samples were prepared as KBr pellets (ratio 5 / 95 
wt.%). The morphology of prepared samples was 
observed by scanning electron microscope (Vega 
Tescan 30 kV). The ultraviolet–visible spectra were 
carried out using a spectrophotometer (UV-Vis 
SPECORD 200 Analytik Jena) for solid sample and 
SP 870plus METERTECH for dyes residual 
concentration.  

 
2.3. Photocatalysis experiments 

 
Photocatalysis experiments were performed 

using an 18W Hg UV B lamp. The incident radiation 
intensity was measured as being 0.105 mW/cm2, and 
was determined by a Hamamatsu C9536-01 meter 
with H9958 detector for 310 - 380 nm, scaled between 
1µW/cm2 and 100 mW/cm2. 

Samples containing the dyes (MB, 10-5 M, or 
PMBH, 5∙10-5M, at natural pH), and 0.2 - 0.3 g/L 
photocatalytic materials were UV irradiated, and the 
concentration of the dye was monitored by UV-vis 
measurements (at 664 nm for MB and 540 nm for 
PMBH). Before recording the spectrum, the samples 
were centrifuged (5000 rotation/min) to separate the 
solid content. The dye-photocatalyst system was 
initially left for 30 minutes stirring in the dark, until 
adsorption equilibrium was reached.  

 
Table 1. Characteristics of organic dye 

 

Dye Chemical structure Molecular 
formula λmax Molar mass 

Methylene blue (MB) S

N

N
CH3

CH3

N
CH3

CH3

+

Cl -  

C16H18ClN3S 664 nm 319.85 g/mol 

4’-(1-methyl-
benzimidazoyl-2)-

phenylazo-2”-(8”-amino-
1”-hydroxy-3”,6”-

disulphonic)-naphthalene 
acid (PMBH) 

N

N
N

CH3

N

OH NH2

HSO3
SO3H

 

C24H19N5O7S2 540 nm 553 g/mol 
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Sample a1 CeO2-ZnO 

 

  
Sample a2 CeO2-ZnO 

 
Fig. 1. SEM micrographs of a1 and a1 samples at different magnification 

 
Degradation efficiency D(%), was calculated 

with Eq. (1): 
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where A(dye)i and A(dye)t are the absorbance of MB at 
664 nm and PMBH at 540 nm, in the dark and under 
UV irradiation (at t minutes). 

 
3. Results and discussion 

 
3.1. Morphology and structure of CeO2-ZnO 
photocatalysts 

 
SEM micrograph of the surface morphology of 

CeO2-ZnO prepared samples are shown in Fig. 1. 
Sample 1 with a low-CeO2 content presents tabular 
aggregates, with size 0.3×0.6 µm and 0.4×0.7 µm. The 
second sample shows prismatic aggregates ranging in 
size from 1×0.5×0.25 µm up to 2.5×0.8×0.3 µm. The 
aggregates are actually composed of small CeO2-ZnO 

particles leading to a relatively rough surface. 
Microcrystals agglomeration is a common 
phenomenon, which tends to reach a state of minimum 
energy, by reducing the contact with the outside 
environment (Chen and Chang, 2006). The small size 
of crystallites reported is in accordance with 
determined photocatalytic activity. 

UV-vis absorption spectra of the two samples 
is presented in Fig. 2, (inset), and were used to 
calculate the band gap energy, using the Tauc plot. 
According to the photocatalytic mechanism, the band 
gap of the semiconductor plays a major role in the 
photocatalytic activity of as-prepared materials. Band 
gap of the photocatalysts was determined through Eq. 
(2): 

 
( ) ( )gEhkah −⋅= νν 2

             (2) 
 
where: hν is the photon energy (eV), a is the 
absorption coefficient, k is a constant and Eg (eV) is 
the band gap energy. By extrapolating the linear 
region in a plot of (ahν)2 versus photon energy, the 

 767 



 
Apostolescu et al./Environmental Engineering and Management Journal 17 (2018), 4, 765-770 

 
band gap can be estimated from graph, using Eq.(2). 
The band gap values are presented in Fig. 2 and have 
been found to be different than the value reported for 
bulk ZnO (3.3 eV) and CeO2 (3.2 eV) due to quantum 
confinement, according to literature (Jha et al., 2013; 
Sabari Arul et al., 2015), the estimated band gap 
values for CeO2-ZnO are 2.45eV and 2.7 eV. 
 

 
 

Fig. 2. The optical absorption energy band gap estimated 
for CeO2-ZnO samples. Inset: the corresponding UV–vis 

absorption spectrum 
 

FTIR analysis presented in Fig. 3 was 
performed in order to verify if during calcination, the 
organic phase left the system. It is observed that the 
characteristic peaks of the organic phase  (1629-1590 
cm-1 corresponding to the carboxylic salt, 1310 cm-1 
alkyl bond and 796 cm-1 C-H bonds) present in 
uncalcined samples are not found in the calcined 
samples. The Zn–O vibration is around 550 cm-1, the 
large band located at 3400 - 3450 cm-1 is attributed to 
the stretching vibration of O–H in the adsorbed water 
molecules (Khataee et al., 2015) and the Ce–O 
symmetric stretching vibration is around 520cm-1 
(Tambat et al., 2016). 

 

 
 

Fig. 3. FTIR analysis for sample a1 and a2 calcinated and 
uncalcinated 

XRD patterns of CeO2-ZnO composites are 
shown in Fig 4 and exhibits various peaks which could 
be indexed according to ZnO diffraction peaks 
(JCPDS card no. 36-1451) and CeO2 diffraction peaks 
(JCPDS card no 34-0394): for CeO2, the peaks 
presented at 2θ 28.5, 33.09, 47.49 and 56.4 can be 
indexed as (111), (200), (220) and (311) planes, and 
for ZnO the peaks presented at 2θ 31.9, 34.6, 36.4, 
47.8 and 56.8 can be indexed as (100), (002), (101), 
(102), (110) (Jule et al., 2016; Sabari Arul et al., 2015). 
For the XRD pattern of the CeO2-ZnO clearly matches 
with the polycrystalline structures of CeO2 and ZnO, 
indicating the formation of composite CeO2-ZnO 
without any other impurity. 

 

 
 

Fig. 4. The XRD patterns of CeO2-ZnO composites 
 
3.2. Photocatalytic activity 

 
Photocatalytic activity of synthesized samples 

was evaluated by studying the behavior at UV 
irradiation of a cationic dye MB, and a diazoderivate, 
PMBH and are presented in Fig. 5 and Fig. 6. Blank 
experiments show that the two materials are stable at 
UV radiation. 

 

 
Fig. 5. Photocatalytic degradation rate of MB dye with 

CeO2-ZnO prepared sample at different catalyst dose and 
under various UV–vis light irradiation times 
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Fig. 6. Photocatalytic degradation rate of PMBH dye with 
CeO2-ZnO prepared sample at different catalyst doses and 

under various UV-vis light irradiation times 
 
After an hour of irradiation of the system (MB 

+ sample a1), using 0.2 g/L catalyst concentration was 
achieved 60.5% as degree of discoloration and 63% 
for 0.3 g/L catalyst concentration. For sample a2 and 
after one hour of irradiation, the amount of 
discoloration varies from 73.4% for the dose of 0.2 g/L 
to 83.5% for 0.3 g/L catalyst. MB was discolored in a 
percentage of 97.6% after 80 minutes in the sample a2, 
0.3 g/L.  

When PMBH was used, the time was greater, 
compared with MB, so after 100 minutes for sample 
a1 was obtained a value of 39.8% for the dose of 0.2 
g/L and 50% for the dose of 0.3 g/L and sample a2, 
59.4% to 0.2 g/L and 72% to 0.3 g/L. A degree of 
discoloration by 99% was achieved after 180 minutes 
for sample a2, 0.3 g/L. Sample a1 (0.2 g/L) was 
completely degraded only after 360 minutes. 

For the two dyes similar behavior was 
observed, such as increasing catalyst dose has resulted 
in a higher rate of degradation. The photocatalytic 
reactions describing the mechanism are shown in Eqs. 
(3 – 7), in agreement with the literature (Atchudan et 
al., 2017): 

 

( ) ( )( )+− +→+ VBCB he h  ZnO ZnO  ν           (3) 
 

( )
+−+ →+ 3 4 Ce Ce CB e  as electron trap          (4) 

 
( ) ZnOOH ZnOOOe ZnO  OH-

2
 

2
- 2 + →+→+ • 

                           (5) 
 

( ) ZnOOH OH ZnO  - +→+ •+  h           (6) 
 

( ) dye degradeDyeOOH  -
2 →+++ +•

VBh           (7) 
 
Also, the higher percentage of CeO2 in the 

synthesized materials has led to higher rate of 
degradation, Ce4+ ions act as a trap to prevent 
recombination of electron-hole pairs created by 

irradiation with ultraviolet radiation with E > Eg (Lv 
et al., 2016), thus accelerating the photocatalytic 
process. 
 
4. Conclusion 

 
In this paper the synthesis, characterization and 

photocatalytic activity of two oxide materials based on 
CeO2-ZnO are presented. The structure of materials 
synthesized by the hydrothermal process were 
investigated by SEM, FTIR, XRD, UV-vis and the 
band gap energy values were calculated.  

The two catalytic materials are sensitive to low 
radiation doses, compared to those reported in the 
literature. Both samples show good photocatalytic 
activity measured for the degradation of PMBH and 
MB and the degree of discoloration of organic 
materials increased with the increasing percentage of 
CeO2. 
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