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Abstract 
 
Livestock production is under growing public and scientific scrutiny for its greenhouse gas (GHG) emissions. This article contains 
a preliminary assessment of the inclusion of upstream life-cycle GHG emissions in concentrated feeds design, using the most 
common nonlinear programming optimization algorithms to determine feed composition. First, GHG emissions are included as 
costs in a single criteria optimization problem. The unit price of GHG emissions was obtained using a genetic algorithm. Second, 
GHG emissions are included as a target function to minimize in a multi criteria optimization problem using goal attainment 
programming. Results obtained after both optimization methods were applied to two case studies, namely fattening pigs and rabbit 
feeds. Changing ingredients in concentrated feed blends has a marginal effect on GHG emissions due to mandatory nutritional 
constraints. If the optimization is unconstrained, the maximum possible decrease in GHG emissions is 27.5% for the pigs feed, 
accompanied by increasing costs and a decrease in feed nutritional quality. To maintain nutritional integrity, the maximum possible 
reduction in GHG emissions is 7.5%. Considering cost as an optimization variable in the problem, the maximum decreases are 
even lower. It is possible to decrease emissions by 71% for the rabbits feed, but the cost of the reduction is higher than the 
opportunity cost for farmers to reduce GHG emissions using other strategies. These results are qualitatively robust but critically 
depend on feed ingredients GHG emissions and cost data. 
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1. Introduction 

 
Life Cycle Assessment (LCA) studies show 

that food and beverages are one of the three types of 
products with the largest environmental impacts in the 
European Union (Tukker et al., 2006). Meat 
production is particularly relevant for this score 
(Weidema et al., 2008). The contribution of the 
livestock sector to worldwide greenhouse gas (GHG) 
emissions is estimated in the range of 18% (Steinfeld 
et al., 2006) to 50% (Goodland and Anhang, 2010), 
although the upper estimate has been disputed 
(Herrero et al., 2011). Concentrated feed production 
(including sourcing of ingredients) and transportation 
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are often the hotspots in meat production (Cederberg 
and Mattsson, 2000; Lewandowski et al., 1999; van 
der Werf et al., 2005). This means feeds formulations 
are the first place to look for optimization options. 

Livestock feed formulation is usually treated as 
a programming optimization problem. One of the most 
widely used approaches is the least-cost feed 
formulation method using the simplex method to 
derive solutions of a linear programming model (Peng 
and Li, 2011). The model combines ingredients to 
obtain the optimum composition, which minimizes 
costs, subject to nutritional and ingredient availability 
constraints (Saxena et al., 2016). Several initiatives 
related to environmental product labeling are 
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underway and will likely steer the market towards 
more environmentally-friendly meat products. In the 
future, producers may have to minimize 
environmental impacts as well as costs. The recent 
literature has thus been flourishing with authors trying 
to expand the typical feed optimization algorithms by 
including environmental criteria. Oishi et al. (2011) 
used the least-cost feed formulation method applied to 
the Japanese beef fattening system. They considered 
nitrogen (N) and phosphorus (P) as additional costs 
and introduced them in the least-cost objective 
function. Dubeau et al. (2011) approached the same 
problem in France and Québec by adding N and P as 
part of a multi-objective minimization problem 
(Žgajnar and Kavčič, 2009). The authors minimized N 
and P as objectives (objective functions) to quantify 
the trade-off between excretions and costs, providing 
a tool for decision-makers. They did not point out one 
specific optimum feed formula. If the objective is to 
find optima considering more than one function to 
minimize (or maximize: e.g. nutritional quality), 
problems regarding simultaneous attainment arise 
(Peric and Babic, 2009). If functions are minimized in 
parallel (equal weighs for all objectives), the final 
result may be neither optimum for any of them 
separately nor Pareto efficient. In optimizations that 
are not Pareto-efficient any improvement according to 
one criterion comes at the cost of another criterion. 

To overcome this problem, Castrodeza et al. 
(2005) use a fractional model together with an 
Interactive Multiple Goal Programming (IMGP) 
decision method. With IMGP, each objective is 
optimized individually, and then the decision-maker, 
faced with the results, makes successive choices on 
which criteria to improve first, thus generating a 
second feasible solution space, and repeating the 
procedure until one solution remains. This method 
does not require the decision maker to know 
beforehand which goal is preferred, but it is not 
systematic and does not necessarily provide efficient 
results.  

As an alternative, goal programming 
introduces preferences in problem formulations 
(Caballero et al., 2009). Farmers may have specific 
preferences that bias results towards their end. For 
example, Babic and Peric (2011) provide explicit 
goals for total feed cost, nutritional quality (share of 
nutrients) and water content, as well as several 
scenarios of farmer preference between criteria. 
Instead of relying on decision-maker ad hoc decisions, 
results can reflect the best feed formulation that 
respects optimization criteria in sequential order.  

Using this framework, this article proposes 
methods to test the cost-effectiveness of decreasing 
upstream GHG emissions (i.e. considering life-cycle 
emissions for each feed ingredient) by replacing 
ingredients in feed blends. So far, the introduction of 
environmental variables in feed formulation problems 
has been restricted to N and P emissions or excretions 
(Finneran et al., 2010; Pomar et al., 2007) and methane 
(CH4) emissions from etheric fermentation and 
manure management (Moraes et al., 2012). Moraes et 

al. (2012) tested the influence of a GHG tax in direct 
CH4 emissions management, but the research question 
here is different: can life-cycle GHG emissions from 
feeds be reduced by changing feed ingredients while 
maintaining the same nutritional restrictions, and if so 
at what cost? By analyzing both emissions reduction 
and cost simultaneously, the feed cost increase per unit 
of GHG emissions reduction can be compared with 
international carbon market prices, thus determining 
the cost-effectiveness of the approach. The following 
section proposes two alternative methods to address 
this question, while the results section deals with the 
application of the methods to specific datasets. 
 
2. Material and methods 
 
2.1. Nonlinear programming method 
 

The most generic formulation for the feed 
optimization problem is to minimize an objective 
function F (Eq. 1): 
 

( )XFXmin  (1) 
 
where F is a function of vector X = (x1, x2, …, xn) 
where xj, j = 1,. . . ,n denotes the proportion of 
ingredient j in the diet and n is the total number of 
ingredients available (Castrodeza et al., 2005). F is a 
vector of the t target functions to minimize or 
maximize (Eq. 2): 
 
( ) ( ) ( ) ( )( )Tt XfXfXfXF ,...,, 21=  (2) 

 
Note that if there is only one criteria to 

optimize (e.g., cost), F = f1. Essential nutritional 
requirements of animals (protein, energy, calcium, 
etc.) are not objective functions, but rather interval 
constraints on the minimum and maximum values x 
can take (Eq. 3): 
 

i

n

j
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=

≤≤
1

,
 (3) 

 
where i = 1, …, k. k is the number of nutrients (or 
constraints) considered, ai,j the amount of nutrient i in 
ingredient j, minimum and maximum bi are the lower 
and upper bounds, respectively, of nutrient i in the 
diet. There may also be lower or upper thresholds for 
the amount of some ingredients in the feed. 
Considering sj is the maximum proportion of 
ingredient j in the diet, the case where there is a 
maximum amount is translated by Eq. (4): 
 

jj sx ≤  (4) 
 

Two methodological possibilities were tested 
to introduce GHG emissions as an optimization 
parameter: (a) following Oishi et al. (2011), consider 
GHG as an additional cost in a single criterion 
optimization problem, as described in section 2.2 
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below; (b) following Babic and Peric (2011), consider 
GHG an additional target function, and apply goal 
attainment programming, as explained in section 2.3. 
 
2.2. GHG emissions as part of least-cost optimization 
 

In the least-cost optimization, Eq. (2) becomes 
(Castrodeza et al., 2005) (Eq. 5): 
 

( ) ( ) ∑
=

==
n

j
jj xcXfXF

1
1

   (5) 

 

where cj is the unit cost of ingredient j. Considering 
GHG emissions as an additional cost (Oishi et al., 
2011), Eq. (5) becomes (Eq. 6): 
 

( ) ( )∑
=

⋅+=
n

j
jjj xGHGpXF

1
β    (6) 

 

where pj is the unit price (i.e. per unit of mass) of 
ingredient j, GHGj is the unit CO2e emissions of 
ingredient j, and β is the cost of each unit of CO2e 
emitted. β is calculated as the increase in feed cost 
needed for a given decrease in total emissions. 

Eq. (6) can only be minimized as a single 
criteria optimization problem if β is known. There are 
two possible ways to estimate β. First, it could be 
introduced as an exogenous variable, in which case it 
would be the average cost of GHG emissions obtained 
from some external source. This is the approach 
followed by Oishi et al. (2011). The social cost of 
carbon and the international carbon market price are 
examples of external sources that could potentially be 
used. Alternative, it is possible to find β using the same 
datasets that are also employed in the optimization 
step. Since the meaning of β is narrower as it applies 
only to the price of carbon emitter due to feed blends 
ingredients, in this work the second strategy was 
chosen, using a genetic algorithm (GA). GA finds a 
Pareto-efficient solution space (Sahman et al., 2009) 
where both variables - cost and GHG emissions - are 
minimized simultaneously (Eq. 7): 
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Both equations are optimized considering 
nutritional constraints. The result of the GA 
application is not one optimum feed mix that 
minimizes both simultaneously, but rather an 
“efficiency frontier” depicted by a curve whose points 
are all Pareto-efficient combinations. Eq. (7) is thus 
not an optimization problem since it does not yield a 
unique solution. Its objective is only to find β and use 
the parameter in Eq. (6). 

 
2.3. Multi criteria optimization with goal attainments 
 

Alternatively to the process described in 
section 2.2, where a single target function is 

optimized, multi criteria optimization can also be 
performed using multiple target functions as depicted 
by Eq. (2). Multiple goal attainment requires a priori 
ranking between objectives. The objective is to 
minimize the deviations from the target function’s 
goals. Former objective functions are thus modified 
and become additional restrictions in the problem 
(Babic and Peric, 2011) (Eq. 8): 
 
( ) tttt GwXf =− γ    (8) 

 
and each function t is evaluated with vector solution 
X, minus the deviation γ weighed with the decision 
makers’ preference parameter w has to be equal to the 
goal G. Note that γ can be positive or negative (a 
negative deviation is an overshoot). 
 
2.4. Data for case study comparisons 
 

The methods in sections 2.2 and 2.3 were 
primarily applied to a case study feed for fattening 
pigs, as described by Babic and Peric (2011). 
Originally three criteria were optimized – water 
content, nutritional quality and cost of each ingredient 
in a pig growth feed, including nutritional and 
ingredient availability restrictions. The entire dataset 
can be found in the original paper. Babic and Peric 
(2011) assign dual role to nutritional requirements: 
they are constraints as well as an optimization goal. 
First, minimum or maximum nutritional restrictions 
are included for raw protein, pulp, calcium, 
phosphorus, ash, methionine, lysine, tryptophan, 
threonine, isoleucine, histidine, valine, leucine, 
arginine and phenylalanine. These restrictions ensure 
that the necessary dose of each ingredient is included 
in every feed. The amount of each nutrient in the feed 
is included as a fraction of the total amount needed to 
ensure maximum growth. Additionally, the sum of all 
nutrient fractions is itself a maximization goal to 
ensure weight gain. This means that feeds that contain 
high digestibility ingredients are favored. The present 
article also assumes this dual role of nutrition for the 
multi criteria optimization problem. For least-cost 
optimization, nutrition is only included as a constraint. 
Also similarly to Babic and Peric (2011), in this article 
ingredients add up to 97% of the mass of the feed. The 
additional 3% mass respects to minor ingredients and 
additives that must be part of the feed and cannot be 
optimized. 

Data on GHG emissions of the ingredients was 
obtained as an average of all records of a similar type 
in the Carbonostics (www.carbonostics.com) 
proprietary database, adapted from results presented in 
Teixeira (2014). Carbonostics is an LCA tool 
specialized on the agri-food sector. Note that GHG 
emissions are the only LCA environmental indicator 
used due to data availability and also to maintain a 
minimum possible level of complexity (less 
parameters to optimize). Plus, this dataset considers 
the emissions up until the end of production of the 
ingredients of the feed. Emissions from the digestion 
of the feed and manure are not included (Table 1). 
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Table 1. Data on life cycle GHG emissions from the 

ingredients considered 
 

Ingredient GHGa Emissions  
(kg CO2e/kg) 

Barley 0.54 
Maize 0.27 

Lucerne 0.24 
Powdered milk 9.11 

Fish meal 1.60 
Soya 0.68 

Soya hulls 0.52 
Dried whey 0.08 
Rapepellets 0.30 

Wheat 0.47 
Rye 0.42 

Millet 0.47 
Sunflower pellets 0.13 

aGHG – Greenhouse gases. Source: adapted from the database 
used in Teixeira (2014) 
 

For goal attainment, Babic and Peric (2011) 
indicate as goals for cost 1.85 monetary units (MU), 
for the share of nutrients 77%, and for the share of 
water 8.3%. This paper introduces a further objective 
for GHG emissions of 0 kg CO2e. While zero 
emissions are an impossible target, it is the simplest 
number that guarantees the maximum priority for the 
goal of emissions reduction. Any number minor or 
equal than the minimum feasible solution for 
emissions provides the same result. Also, Babic and 
Peric (2011) test four scenarios (A-D), to which three 
more (E-G) are added, according to Table 2. To have 
a higher priority means to have the highest weight (wt 
in Eq. (8)). 

 
The GA, linear optimization and goal 

attainment methods were applied using the software 

MATLAB 7, using the functions “gamultiobj”, 
“fmincom” and “fgoalattain”, respectively. 

After examining data from Babic and Peric 
(2011), the same method was applied to datasets from 
two other research articles. The first one, Castrodeza 
et al. (2005), also targets growing pigs, but has a wider 
range of ingredients and different nutritional 
constraints since one of the goals of the work is to limit 
nitrogen pollution as ensured by a balanced pig diet. 
In this case the nutritional criteria are crude fiber, 
methionine plus cysteine, tryptophan, threonine, 
calcium, total phosphorus, available phosphorus, dry 
matter, crude protein, lysine, and digestible energy. 
The second dataset, Altun and Sahman (2013), 
focused on feeds for rabbits. The nutritional criteria 
are similar to Castrodeza et al. (2005). Furthermore, 
while Babic and Petric (2011) use unknown monetary 
units, Castrodeza et al. (2005) use Euros and Altun and 
Sahman (2013) use Turkish Liras. 
 
3. Results and discussion 
 
3.1. Application of the genetic algorithm 
 

Application of the GA provided the Pareto 
frontier defined by the solutions depicted in Fig 1. The 
frontier can be depicted, in the simplest case, by a 
linear relation (R2=86.9%). A better fit is obtained 
when the curve is depicted as a second-order 
polynomial (R2=94.2%). In either case, the figure 
shows that increasing costs from 2.34 to 2.36 MU 
results in a significant decrease of GHG emissions 
(0.55 to 0.49 kg CO2e). To further decrease emissions 
results in heavily increasing costs. Parameter β, the 
marginal cost of abating GHG emissions in feeds, is 
calculated the two possible fits in Fig. 1.

 

 
 

Fig. 1. Pareto frontier for the multi-objective optimization problem of minimizing feed cost  
and GHG emissions, using a genetic algorithm (MU – Monetary units) 
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Table 2. Objectives for the goal attainment problem 

 
Scenario A B C D E F G 

Priority is 
to 

minimize: 

1st Exceeding 
costs 

Nutrient 
shortfall 

Water 
excess 

Exceeding 
costs & 

Exceeding 
raw protein 

GHG 
emissions 

GHG 
emissions 

GHG 
emissions 
&Nutrient 
shortfall 

2nd Nutrient 
shortfall 

Exceeding 
costs 

Exceeding 
costs 

Nutrient 
shortfall 

Exceeding 
costs - - 

3rd Water 
excess 

Water 
excess 

Nutrient 
shortfall 

Water 
excess 

Nutrient 
shortfall - - 

4th - - - - Water 
excess - - 

 
Using the linear expression (Eq. 9): 

 

5667.0
2

=−=
edCO

dC
linearβ    (9) 

 
The consequence of the linear factor is that the 

contribution of GHG emissions cost to the 
minimization function is always negative, i.e., to 
decrease emissions farmers must increase costs. Using 
the quadratic expression (Eq. 10): 
 

2542.78866.12 2
2

+⋅−=−= eCO
edCO

dC
quadβ  (10) 

 

This approach makes the marginal effect 
dependent on the level of GHG emissions. It interprets 
the curve as making trade-offs otherwise hard to 
capture for very low or very high CO2e emissions, 
which is where the curve in Fig. 1 is not linear. In Eq. 
(10), the role of GHG emissions in the minimization 
function is positive or negative depending on the 
ingredient. Ingredients with low cost and emissions 
have a positive contribution, i.e., increasing their share 
in the feed is a double positive contribution to cost 
minimization. This quadratic β estimation is thus 
qualitatively preferable to the linear approach, but 
quantitative differences in final results only arise when 
there is a large share of fringe (in terms of emissions) 
ingredients. The next section shows that this is never 
the case in the datasets used in this work. 
 

3.2. GHG emissions as part of least-cost optimization 
 

There are two options for replacing β in the Eq. 
(6) target function (Eqs. 11-12): 
 

( ) iix xeCOp 25667.0min ⋅+  (11) 
 

( ) iix xeCOeCOp 2
2

2 2542.78866.12min ⋅−⋅+  (12) 
 

Eqs. (11) and (12) are dimensionally correct 
optimization problems. There is no trade-off between 
cost and GHG emissions because the solution of the 
optimization problem is already the most efficient (the 
one that minimizes cost and GHG emissions), by 
definition of β. The application of the LP algorithm 
yields results shown in Table 3, which shows that the 
feed obtained for cost minimization without including 
GHG emissions in the objective function has the 
highest GHG and lowest cost. Results vary depending 

on whether GHG costs change linearly or 
quadratically with ingredient cost. In the first case, the 
cost of reducing each kg CO2e is 0.407 MU; the 
maximum reduction in GHG emissions that satisfies 
nutritional constraints is 3.1%. In the second case, the 
cost is 2.713 MU/kgCO2e, and the maximum 
reduction in GHG emissions is 7.5%.  

The high cost has to do with the strict 
restriction that all trade-offs during the application of 
the GA must be Pareto-optimal. The main differences 
in feed formulation is a shift towards the replacement 
of barley with soya hulls and rye, which are more 
efficient in terms of the balance nutrition/CO2e 
emissions but also more expensive. 
 

Table 3. Results of inserting GHG emission costs in the 
objective cost function to minimize 

 
Ingredient/ 
Indicator 

Only 
feed 
costs 

Linear 
GHG, Eq. 

(11) 

Quadratic 
GHG, Eq. 

(12) 
Barley (%a) 0.15 0.06 0.09 
Maize (%) 0.15 0.15 0.15 

Lucerne (%) 0.03 0.04 0.03 
Powdered milk (%) 0 0 0 

Fish meal (%) 0 0 0 
Soya (%) 0.12 0.12 0 

Soya hulls (%) 0 0 0.11 
Dried whey (%) 0 0 0 
Rapepellets (%) 0.15 0.15 0.15 

Wheat (%) 0.15 0.15 0.15 
Rye (%) 0.07 0.15 0.15 

Millet (%) 0 0 0 
Sunflower pellets 

(%) 0.15 0.15 0.15 

GHGb emissions 
(kg CO2e/kg feed) 0.377 0.365 0.349 

Cost (MU/kg 
feedc) 1.836 1.841 1.913 

Nutrients (per kg 
feed) 71.898 71.983 70.562 

Water (per kg 
feed) 9.721 9.713 9.871 

a The sum of all percentages is 97% because the additional 3% 
are minor ingredients and additives set aside from the 
optimization; 
 b GHG – Greenhouse gases; c MU – Monetary Units 
 

3.3. Multi criteria optimization with goal attainments 
 

Results are shown in Table 4. Scenario A, 
which is a cost-first optimization, is comparable to the 
previous cost minimization approach. Results from 
Scenario A are similar to those in Table 3, indicating 
some mutual reinforcement of the two approaches. 
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The cost of reducing each unit of CO2e in other 
scenarios is higher than in Scenario A: 7.7 MU for 
Scenario E, 10.9 MU for Scenario F and 47.5 MU for 
Scenario G. The relative decreases in GHG emissions 
are 19.1%, 27.5% and 7.5%, respectively. Feed quality 
always drops when GHG emissions decrease, and 
water consumption also seems to decrease with GHG 
emissions. Regarding feed formulations, in this case 
barley, powdered milk and fish meal are removed 
from the feed, and in Scenario F wheat is also reduced 
to a third. In Scenario G, in which GHG emissions 
reduction and maintaining feed quality are equally 
important, the decrease in GHG emissions is much 
lower than in Scenario F, but total nutrition is similar 
to Scenario B. This means that it is possible to reduce 
GHG emissions while maintaining quality standards, 
but at the expense of a 73.4% increase in costs. Results 
are shown in Table 4. 
 
3.4. Application to other data sets and animal types 
 

Data from Castrodeza et al. (2005) was 
analyzed using multi-objective goal attainment using 
two possible objectives: cost minimization and GHG 
emissions minimization. While weights may vary, 
there are only two feasible solutions, which 
correspond to cost-first and GHG reduction-first. It is 
possible to reduce GHG emissions by 18.5%, with a 
cost of 12.87 €/t feed. This means that the reduction of 
each ton of CO2e costs 135.34 €. 

Evaluating data from Altun and Sahman (2013) 
under multi-objective goal attainment also provides 
two feasible solutions only (cost-first and GHG 
reduction-first). This is when the highest improvement 
potential surfaces. Switching from Scenario A to B 
would decrease emissions by 73%, while increasing 
costs by 4.73 Krs/kg feed. This means that, under this 
method, the cost of reducing emissions is 5.09 Krs/kg 

CO2e, or, at the conversion rate of 1 Krs = 0.44 cents 
of €, 22.38 €/ t CO2e. 
 
3.5. Economic efficiency of replacing feed ingredients 
 

Cost minimization results, in the case when 
GHG emissions are introduced as extra costs, 
produced a strict constraint on feed blend that required 
solutions to be Pareto-efficient. As a consequence, 
smaller reductions in GHG emissions are obtainable. 
A higher potential for decrease was obtained only 
when using multi objective optimization. Since this 
procedure does not discard Pareto-dominated 
solutions, it is possible to decrease GHG emissions 
more than with the GA cost minimization method, but 
also at much higher costs. The two methods are indeed 
convergent in comparable situations, i.e. when costs 
are the main variable to minimize. Multiple goal 
attainment should be used preferably when there is 
flexibility for more drastic (but ultimately 
constrained) changes in production. Results cast doubt 
over the cost-efficiency of switching ingredients in a 
feed to decrease its life-cycle emissions. Let us 
consider that the maximum opportunity cost for 
farmers is the reference cost for GHG emissions in the 
international carbon market (20 €/t CO2e). It is 
possible that some farmers find even lower costs with 
other GHG minimization strategies (carbon 
sequestration in soils, change of tillage method etc.). 
For the rabbits feed, the result is similar to the 
reference cost (22.38 €/ t CO2e), but for pigs feed it is 
much higher (135.34 €). Considering that the cost 
found for rabbits feed corresponds to a decrease in 
71% in emissions, which is the maximum possible 
reduction considering the constraints, it is highly 
doubtful that a blend that uses different ingredients 
can be even more efficient, and thus more cost-
effective in reducing emissions.  

 
Table 4. Results of the application of the goal attainment algorithm to data from Babic and Petric (2011) 

 

Ingredient/Indicator Scenario 
A B C D E F G 

Barley (%a) 0.13 0.04 0.07 0.15 0 0 0 
Maize (%) 0.15 0.15 0 0.15 0.15 0.15 0.15 

Lucerne (%) 0 0 0.64 0 0 0.06 0 
Powdered milk (%) 0 0.07 0.08 0.10 0 0 0 

Fish meal (%) 0 0 0 0.02 0 0 0 
Soya (%) 0.13 0.15 0.15 0 0.10 0 0.15 

Soya hulls (%) 0 0.15 0 0.02 0.02 0.11 0.15 
Dried whey (%) 0 0 0.15 0 0.15 0.15 0.15 
Rapepellets (%) 0.15 0 0.15 0 0.15 0.15 0 

Wheat (%) 0.15 0.15 0 0.15 0.15 0.05 0.15 
Rye (%) 0.11 0.15 0.15 0.08 0.10 0.15 0.07 

Millet (%) 0 0 0 0.15 0 0 0 
Sunflower pellets (%) 0.15 0.11 0.15 0.15 0.15 0.15 0.15 

GHGb emissions (kg CO2e/kg feed) 0.381 1.004 1.194 1.261 0.308 0.276 0.353 
Cost (MU/kg feedc) 1.850 2.409 3.299 2.580 2.410 2.996 3.208 

Nutrients (per kg feed) 73.291 77.000 71.151 71.849 73.916 69.808 76.647 
Water (per kg feed) 9.834 10.255 8.300 9.955 9.111 8.906 9.498 

a The sum of all percentages is 97% because the additional 3% are minor ingredients and additives set aside from the optimization; b GHG – 
Greenhouse gases; c MU – Monetary Units 
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Changes in pigs and rabbits feed blends can be 
considered a mildly cost-effective policy because it 
stands mid-range in estimates of cost-effectiveness of 
policies for GHG emissions mitigation. For example, 
in France for the year 2030, the cost-effectiveness of 
measures in the agricultural sector for GHG mitigation 
ranges from approximately negative 440€ to positive 
460€ for each ton of CO2e averted (the negative 
estimate meaning a cost and the positive revenue) 
(Pellerin et al., 2013). In the UK, there are measures 
for GHG mitigation that cost as much as 1750 British 
pounds per ton of CO2e, and others that have a positive 
result of 300 pounds (Moran et al., 2011). In Ireland, 
the range is between minus 600 and 300€/ t CO2e 
(Schulte et al., 2012). One of the measures indicated 
for France whose cost is similar to those obtained 
above for the optimization of these particular feed 
blends is to reduce the amount of protein in the diet of 
livestock to limit the quantity of nitrogen excreted in 
manure and the associated N2O emissions (Pellerin et 
al., 2013). The similarity of the cost-effectiveness of 
the measure and the calculations in this work is an 
important source of validation for these results. 
Measures that are based on efficiency improvements, 
such as feed blend optimization, are typically more 
expensive than others based on land use change and 
technological innovation (Schulte et al., 2012). 

In the future, the inclusion of GHG emissions 
can be tested in other feed optimization algorithms, 
like for example different variants of the Particle 
Swarm Optimization (PSO) method. Altun and 
Sahman (2013) applied PSO to cost minimization of 
rabbit feeds, and found that PSO is more efficient at 
computing stable optimum values than GA. However, 
the present article found remarkably similar results for 
rabbit feeds using multi-objective goal optimization: 
25.34 Krs/kg feed for cost minimization and 30.08 
krs/kg for GHG emissions minimization (against 
26.73 and 30.17 Krs/kg feed for ingredients that 
minimize cost and ingredients that do not, obtained 
using PSO in the original Altun and Sahman (2013) 
article). 

Introducing other objective functions (such as 
GHG emissions) to minimize in PSO requires multi-
objective PSO (MOPSO) (Coello et al., 2004). 
MOPSO has been applied for the first time in fish feed 
design by Zhang and Wang (2010). The authors 
identify advantages in this method but ran into 
practical problems regarding convergence of solutions 
if running time is longer or if cost and nutritional goals 
are in conflict, despite having disregarded complex 
nutrient interactions. The optimum formulas found 
with MOPSO rely heavily on by-products, which have 
low GHG emissions if impacts are allocated 
economically, but also include fish meal which has 
high emissions (Zhang and Wang, 2010). The 
inclusion of a GHG reduction goal would thus provide 
more conflicting results, at least until preferences are 
included in the MOPSO objective functions 
(Mostaghim, 2010). All in all, MOPSO is more robust 
than GA but the results can be very similar, since both 

consider only Pareto efficient solutions. This means 
that MOPSO models will likely not find other 
optimum solutions that minimize GHG emissions 
beyond the limits found in this work.  
 
3.6. Limitations and future work 
 

The present work is limited in scope to the 
analysis of directly replacing feedstocks in particular 
concentrated feed blends. The next step is to compare 
the potential for GHG reductions by replacing part of 
the feed with grazing. Another option is to test more 
ingredients and blends, since other ingredients may 
produce more drastic results. In fact, some minor 
ingredients (but nutritionally crucial) were ignored 
due to their residual contribution to the overall weight 
of the feed (and thus also to its life-cycle emissions). 
It is also relevant in the future to connect this work and 
the work by Moraes et al. (2012), because changing 
feed formulations also has an impact in its digestion 
by animals and ensuing enteric emissions and 
emissions from manure. Ideally, direct and life cycle 
emissions should be considered simultaneously. 
Digestion of feeds was not included in this analysis, 
only life-cycle emissions from feed ingredient 
production.  

To minimize uncertainty from using secondary 
GHG emissions databases, it is preferable to perform 
a full LCA of the feed ingredients rather than rely on 
average GHG emissions as those presented in Table 1 
when these methods are applied to optimize actual 
feeds. Despite the methodological consistency and 
relatively low uncertainty of these averages (Teixeira, 
2014), there are different methodological choices that 
could provide different results (e.g. using 
consequential rather than attributional LCA). Despite 
the fact that this article does not include a quantitative 
analysis of uncertainty it is clear that results are 
crucially dependent on GHG emissions data, as well 
as the highly volatile feed ingredients prices. 

Also regarding uncertainty, the convergence 
shown in the previous section between results 
obtained using both approaches in this article and 
other studies provides some degree of confidence in 
the robustness of the conclusions. For example, the 
GA used in the least-cost approach could have been 
replaced by other estimates for the price of carbon. 
This methodological choice is a source of uncertainty. 
Multi criteria optimization, however, does not require 
an explicit cost of GHG emissions in monetary units 
and still arrives at similar results in equivalent 
scenarios. In conclusion, it is plausible to assume high 
quantitative uncertainty in the results presented here 
and in similar studies but qualitatively the conclusions 
are robust. 

Further datasets should also be explored. In this 
work pigs and rabbits feeds displayed different 
potential GHG emissions reduction estimates; this 
does not, however, translate into a general higher 
GHG reduction potential in rabbit production rather 
than pig. Results presented here are explained simply 
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by differences in ingredients used in these particular 
datasets. Since some ingredients with high or low 
GHG emissions are more common in feeds for rabbits 
or pigs, it may be the case that the potential for 
amelioration does depend on animal type – but this 
conclusion can only be drawn after more 
comprehensive datasets are explored. 

Finally, since being able to pinpoint where in 
the life cycle of the production of the feed is more 
efficient to reduce emissions is of the utmost 
importance, the cost-effectiveness of improving 
feedstock production should be determined and 
compared with the results of this work. If it proves to 
be less costly to improve each crop’s production than 
to change feed formulations, then that should be the 
target of farmers efforts. 
 
4. Conclusions 
 

Changing concentrated feed blends has a 
marginal effect on CO2e emissions due to tight 
nutritional and cost constraints. For the pigs feed 
studied, the maximum possible decrease in GHG 
emissions is 27.5%; ensuring nutritional integrity, the 
maximum possible reduction in GHG emissions is 
7.5%. In rabbits feeds emissions could be decreased 
by 71%, but at a cost that would exceed the 
opportunity cost for farmers to reduce emissions 
elsewhere.  

Changing feeds to mitigate GHG emissions is 
at best mildly cost-effective, but it cannot be discarded 
since any improvements will affect 825 million tons 
of feeds produced each year (Feed International, 
2014).  
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