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Abstract 
 
Indoor environment significantly affects occupants’ health and productivity. However, in smart buildings and cities, it can be 
improved thanks to the implementation of innovative ICT systems and services. Thermal comfort is one of the most complex 
aspects to be considered to enhance occupants’ well-being, because of the relevant role played by subjective parameters 
(physiological, psychological and cultural) in its evaluation. This challenge can be tackled by integrating wearable devices into the 
monitoring framework. Thus, this paper presents an innovative methodology to measure metabolic rate (M) based on wearable 
devices, which can be used to apply Fanger’s comfort model. This model makes use of both environmental and physiological 
quantities to calculate the PMV (Predicted Mean Vote) index. The former can be easily acquired through standard sensors, on the 
contrary, providing a good evaluation of the physiological variables of the model (i.e. metabolic rate and clothing insulation) is 
more difficult. In the proposed methodology, a wearable multi-parametric device has been adopted to measure data from occupants 
and calculate the metabolic rate. Different sets of physiological data have been investigated to derive the optimal set providing the 
most accurate metabolic rate. Results from laboratory tests are presented, considering activities ranging from sedentary (1 met) to 
more active ones (4 met). Finally, a virtual test bench has been developed to simulate a building where the methodology proposed 
is used to control the indoor air temperature by means of a PMV-based set-point calculation. The methodology has then been 
compared to traditional approaches with constant M. 
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1. Introduction 

 
Considering that people spend about 90% of 

their time in an indoor environment, in the last decades 
great attention has been paid to the assessment and 
optimization of the indoor thermal comfort in office 
buildings. It is well-known that the indoor 
environment and microclimatic conditions greatly 
affect the health, well-being and productivity of 
occupants. This extensive interest can be linked not 
only to the aspects mentioned above, but also to the 
establishment of a series of European Directives and 
international and European Standards aiming at 
improving the energy and environmental performance 
of buildings without decreasing occupants’ comfort 
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(Antoniadou and Papadopoulos, 2017). This theme is 
also interconnected with the necessity of reducing 
energy consumption in buildings, which should be 
able to provide the highest indoor comfort with the 
minimum energy consumption. To this aim, the 
development of new technologies and services for 
optimal comfort management are part of the wider 
context of buildings’ efficiency and sustainability. 
This approach is the basis of the Energy-efficient 
Buildings Public-Private Partnership (EeB PPP) 
initiative supported by the EU Commission, where 
research projects are founded to achieve the EU goals 
in terms of energy use, decarbonization, sustainability 
and improved living and well-being, also taking into 
account particular sectors like the ageing one. In this 
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context, several projects have been co-founded to 
support the development of new technologies under 7 
technology clusters (from design to ICT). Given the 
attention to all levels (from building to urban scale), 
one of the main exploitations of the results of the 
initiative can be found in the Smart City paradigm, 
where new services are provided to improve cities in 
relation to the above-mentioned themes. In this 
context, thermal comfort is one of the main services 
that a building should deliver and, today, the need to 
improve the state-of-the-art methodology used to 
assure this is particularly strong. For this reason, 
comfort management should make use not only of 
environmental parameters but also of parameters 
related to occupants, which, however, could vary in 
time and space according to multi-contextual factors 
(e.g. activity, age, culture, social rules etc.) (Kim et al., 
2018). In this context, the use of innovative 
technologies, most of them coming from ICTs, 
integrated with existing models and tools can enhance 
the comfort delivered with reduced environmental 
impact (Capolongo et al., 2013; Lee et al., 2017; Petri 
et al., 2015; Revel et al., 2015a; Zampetti et al., 2018). 
The work presented in this paper wants to address this 
topic, illustrating an example of how a traditional 
thermal comfort model can be empowered with the 
integration of ICT tools, to increase the monitoring 
and controlling capacity in a building. 

As said, thermal comfort is one of the most 
important factors for the well-being of building 
occupants. The American Society of Heating, 
Refrigerating and Air-Conditioning Engineers 
(ASHRAE) defined thermal comfort as ‘‘the condition 
of the mind in which satisfaction is expressed with the 
thermal environment’’(ASHRAE, 2017). Therefore, 
according to the above definition, comfort is a 
subjective sensation.  

Thermal comfort is generally measured by 
sensors compliant with mathematical models that 
express the overall interaction between human body 
and the environment (body heat production and 
exchange, influencing factors, etc.). The most used 
model is based on Fanger’s comfort theory which 
enumerates six factors to determine heat balance and 
provides a formula to calculate the PMV (Predictive 
Mean Vote) index. Four of the six are environmental 
parameters: relative humidity, air temperature, mean 
radiant temperature and air velocity. The remaining 
two are personal factors: metabolic rate and clothing 
insulation. The PMV measurement thus requires the 
capability to sense not only the environmental 
parameters, but also those factors that are related to 
occupants’ characteristics. With regard to the 
environmental quantities, the microclimate station is 
the most used device for short-term monitoring. 
Recently, innovative solutions have been developed to 
provide measurements with the same level of 
accuracy, although for real-time and continuous 
monitoring purposes (Revel et al., 2014a). With regard 
to the personal factors, recent studies have been 
carried out to explore the impact of subjective 
parameters on thermal comfort monitoring, as 

presented in (Luo et al., 2016), also offering some 
solutions for the measurement of the metabolic rate 
(Luo et al., 2018). However, in practical building 
controls, subjective parameters (which greatly affect 
thermal comfort) are not considered (thermostats) or 
are still treated as constants, adopting values from 
standards and according to the typical end-use of the 
building. This assumption usually does not reflect real 
conditions and, therefore, leads to incorrect 
evaluations. In the view of improving these 
estimations, this work presents a new methodology for 
the dynamic measurement of the metabolic rate, 
making use of wearable sensors based on the 
methodology presented in (Revel et al., 2015b).  

Going beyond the results obtained in the work 
of (Hasan et al., 2016), the continuous assessment 
methodology has been tested for the monitoring but 
also for the comfort management of a building. Thus, 
attention has been focused on both the integration and 
the uncertainty of the measurement technique 
proposed, in order to determine the impact on the 
PMV-based comfort management. Finally, a virtual 
test bench has been developed to show the 
applicability to the real-time control of the HVAC of 
buildings. Therefore, a simulation model of a building 
has been used to test a PMV-based air temperature 
controller, with and without the dynamic metabolic 
rate method. This test has showed the advantages 
achievable from using the real-time measurements of 
the metabolic rate thanks to the reduced uncertainty of 
the PMV index estimated to control the environment. 
 
2. Material and methods 
 
2.1. Model used for comfort monitoring 
 

The PMV model aims at predicting the mean 
thermal sensation of a group of people in the same 
environment (Fanger, 1970) through a steady-state 
heat balance model of the human body. The PMV 
index is a function of air temperature (ta [°C]), mean 
radiant temperature (tr [°C]), water vapour partial 
pressure pa [Pa], which, in turn, is a function of the 
measurement of relative humidity (RH [%]), air 
velocity (va [m/s]), clothing insulation (Icl [clo]) and 
metabolic rate (M [met]) and represents the thermal 
sensation of occupants (Eq. 1): 
 

( ), , , , ,a r a a clPMV f t t p v I M=  (1) 
 

The measurement of the environmental 
parameters can be easily performed through standard 
instrumentation such as black-globe thermometers, 
anemometers, thermistors (e.g. microclimate stations). 
Moreover, with the recent growth in technologies, new 
low-cost devices have been developed for the real-
time monitoring of ambient parameters, as in (Revel 
et al., 2014a). On the contrary, personal parameters are 
difficult to measure. The next Section introduces a 
new methodology for the integration of the "human 
dimension" so as to allow a more accurate assessment 
of thermal comfort. 
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2.2. Calibration curves for the real-time measurement 
of metabolic rate 
 

This section discusses the real-time 
measurement of the metabolic rate. The goal is to 
provide an innovative methodology for the dynamic 
evaluation of M to enhance thermal comfort 
assessment. The metabolic rate is defined as the 
amount of daily energy that a person consumes while 
at rest in an environment that is temperate and neutral 
and while in a post-absorptive state. The chemical and 
physical reactions that occur in an organism are 
reversible and depend on changes in the energy status. 
Among the parameters affecting indoor thermal 
comfort, this physiological parameter is one of the 
most important. In Revel et al. (2014b) a sensitivity 
analysis of the PMV index was performed to 
investigate the PMV variation due to the metabolic 
rate. The authors report that the metabolic rate has a 
high influence, which increases especially for lower 
values (<1met). For this reason, having a good 
estimation of this quantity is important for an accurate 
estimation of thermal comfort (D’Ambrosio et al., 
2011). Small variations of M induce large deviations 
in thermal sensation. 

According to the Standard ISO 8996 (2004), 
there are several methodologies based on the statistical 
analyses or measurements of indirect parameters that 
can be used for the assessment of the metabolic rate. 
Among these, a methodology based on the continuous 
monitoring of the subject’s heart rate (HR) should be 
able to provide an estimation of M with an accuracy of 
±10%. In (Revel et al., 2015b) a simplified version of 
the method described above was applied. The results 
showed that, by applying this method, different 
activities can be identified, considering the real 
perception of the subjects in a room. 

The new methodology presented in this work is 
based on continuous multi-parametric measurements 
to provide a real-time estimation of the metabolic rate. 
A wearable device (BioHarness 3.0 BH3), as the one 
described in (Casaccia et al., 2016), was adopted to 
measure several physical and physiological quantities. 
Specific information about the validity and reliability 
of the BH3 device are discussed in (Johnstone et al., 
2012a; 2012b), through dedicated laboratory tests. 

Referring to Pietroni et al. (2016), different 
indicators (i.e., IN5, IN4, IN3) which depend on the 
number of the parameters considered (i.e., the ones 

measured by the same device) were found. 
Combinations of 5, 4, and 3 parameters (Eqs. 2-4) 
were evaluated. The index derives from a combination 
of different parameters acquired with the BH3. The 
single indicators can be expressed through the 
relationships reported below, which represent the area 
of an irregular polygon: 
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 (4) 
where: HR is the heart rate [bpm], BR is the breathing 
rate [bpm], POS is the posture of the subject [°], ACT 
is the activity level [expressed as VMU – Vector 
Magnitude Units], ACC is the acceleration module [g]. 
Subscript “n” indicates that values were normalised. 
The normalisation was calculated for the following 
range value: 40÷240 bpm for HR, 4÷100 bpm for BR, 
-90°÷90° for posture, 0÷4 for activity level and 0÷6 g 
for acceleration module. The angles a1, a2, a3 are 72°, 
90° and 120° respectively. 

To verify the feasibility of the approach 
proposed, a specific test was conducted to identify the 
most accurate calibration curve for the dynamic 
evaluation of metabolic rates. As reported in Table 1, 
ten young and healthy individuals recruited among 
university students were involved (5 females and 5 
males, age: 21±1 years, weight: 61±13 kg, height: 
1.71±0.09 m, BMI: 20.95±2.72 kg/m2). 
Within the tests conducted, the subjects were asked to 
perform 4 different kinds of activity. Standard ISO 
7730 (ISO 7730, 2005) reports that the PMV model 
returns an estimate of indoor thermal comfort which 
can be considered reliable for metabolic rate values 
not exceeding 4 met.

 
Table 1. Characteristics of the subjects 

 
Subject Gender Age [years] Weight [kg] Height [m] BMI [kg/m2] 

1 F 22 44 1.62 16.77 
2 F 22 56 1.63 21.08 
3 F 21 52 1.60 20.31 
4 F 21 55 1.73 18.38 
5 F 21 70 1.73 23.39 
6 M 19 77 1.80 23.77 
7 M 22 70 1.75 22.86 
8 M 21 58 1.68 20.55 
9 M 21 71 1.88 21.80 
10 M 21 58 1.68 20.55 
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The standard values chosen to perform the tests 
are reported in Table 2. Each subject completed the 
activitiy profiles in 20 minutes and tests were carried 
out following a well-defined order (i.e., ascending 
profile of metabolic rate per activity, then descending 
profile of metabolic rate activity). The acquisition of 
the physiological quantities of interest was performed 
on-board by the BH3 device and the quantities 
computed (e.g., heart-rate, breathing rate, acceleration 
module, etc.) were directly stored inside the device. 
The data were post-processed and Fig. 1 shows an 
example of the time-domain variation of each signal 
acquired during the tests.  

It is possible to observe that both the 
acceleration and activity signals follow the reference 
profile (Activity number, as Fig. 1a) with a good 
approximation. Conversely, the heart rate, breathing 
rate and posture deviate from the standard (Fig. 1b). 
This is probably caused by the fact that an increase in 
metabolic activity is correlated with an increase in 
these physiological quantities, but these parameters 
take a longer time to become stable. The same 
considerations are valid for the descending profile of 
M. A dedicated algorithm for data processing was 
developed as reported in Fig. 2. 

 
Table 2. Standard value of metabolic rate. 

 
Number of Activity Activity Metabolic Rate [met] 

1 sedentary activity 1.2 
2 slow walk on the flat 2.5 
3 go down the stairs 3.5 
4 climbing stairs 4 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 1. (a) Trend of standard-based metabolic rate, acceleration and activity level during the tasks; 
(b) trend of BH, HR, and posture during the tasks. 
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Initially, for each activity, a portion of the raw 
data acquired by the BH3 device was selected. The 
data average was computed, and a first threshold was 
determined using the Chauvenet’s criterion to remove 
outliers (Lin and Sherman, 2007) (excluding those that 
were not within the range ±3 standard deviation). At 
this point, the average of the remaining data was re-
calculated for each single activity performed and a 
second threshold was applied to remove the outliers 
through a robust bivariate analysis implemented 
through a MATLAB toolbox (FSDA - Forward Search 

for Data Analysis) (Riani et al., 2012). This first step 
of data processing was applied to all the signals 
acquired from the respective subjects and for each 
activity. Fig. 3 reports an example of the data obtained 
after data processing. 

Finally, the indicators expressed by Eqs. (2-4) 
were correlated with the standard metabolic rate 
reported in Table 2 and curves for the dynamic 
evaluation of metabolic activity (Eqs. 5-8) were 
obtained (Table 3)(Eqs. 5-8). 

 

 
 

Fig. 2. Scheme of the data processing algorithm. 
 

 
 

Fig. 3. Example of acceleration data after data processing 
 

Table 3. Relationship for the dynamic evaluation of the metabolic rate based on indicators. 
 

Equations R2 RMSE (2 σ) [met] 
25 0.42

0.278.48
IN

M e
− − 

 = ⋅                                                                                                                   (1) 97 % 0.48 

17.5 17.9 cos( 4 2.6) 18.8 sin( 4 2.6)M IN IN= − + ⋅ ⋅ + ⋅ ⋅                                                                   (2) 96 % 0.50 

( )( ) ( )( )1462.0 3 2.22 31.2 3.4 1 15 1IN e INM e e
−− ⋅ − ⋅= + ⋅ − + ⋅ −                                                             (3) 96 % 0.20 

( ) ( ) ( )( ) ( ) ( )( )2 21.88 7.8 4.4 16.6 21.4 5.1n n n n n nM ACC HR HR HR ACC ACC= + ⋅ + − ⋅ + − ⋅ + ⋅ ⋅ + ⋅                             (4) 96 % 0.23 
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This new methodology provides the curves for 
the real-time assessment of the metabolic rate 
expressed as a function of the personal parameters 
acquired simultaneously. Looking at the results in 
Table 3, it appears that, to compute an accurate value 
of M, the measurement of the heart rate and physical 
quantities (i.e., acceleration and VMU index) is 
needed. This suggests that the computing 
methodology proposed could be applied to wearable 
devices (e.g., smartwatches, wearable belts), enabling 
a real-time M measurement with an uncertainty of 
±0.2 met. This outcome is referred to the sample 
population involved and to the activities performed. 
To achieve a wider applicability, the population 
should be extended to include subjects with different 
backgrounds.  
 
2.3. Test Bench for the simulation model 
 

The methodology proposed (presented in 
Section 2.2) was integrated into a virtual environment 
consisting of a building simulation model with 
technical systems which allow the control of indoor air 
temperature by means of a PMV-based approach. In 
the following, the controller developed is described 
and the virtual test bench of a house and the integration 
of the controller are presented. 
 
2.3.1. Development of the controller based on the 
PMV virtual sensor 

Generally, performing the standard control of 
indoor air temperature means to manually set a 
predefined indoor temperature. However, there is a lot 
of interest on how to optimise the selection of such set-
point (Dounis and Caraiscos, 2009) also making use 
of the PMV model, as performed in (Zampetti et al., 
2018). To enhance this aspect, in this work an 
advanced controller (Fig. 4) was developed and tested  

taking into account the real-time measurements of M 
as well as the other environmental quantities collected 
to evaluate comfort conditions. The controller is a 
Proportional-Integral-Derivative (PID) controller 
which takes as input the air temperature (ta) and the 
set-point temperature (Tset) calculated with a PMV-
based method and provides as output the heat to be 
supplied to the house.  

In this simulation, the winter season was 
considered. The PID controller regulates the heat 
required to reach the set-point temperature of the 
simulated home environment. The set-point 
temperature used by the PID controller to achieve 
comfort conditions is determined from a virtual sensor 
that calculates the PMV. In particular, Tset represents 
the air temperature which allows the highest level of 
comfort (PMV = 0). A root finding algorithm was used 
to obtain the value of Tset. (Eq. 9): 
 

 (9) 
 

A Matlab routine based on the Dekker’s 
algorithm, which uses a combination of bisection, 
secant, and inverse quadratic interpolation methods to 
find the roots of nonlinear functions (Brent R.P., 
2013), was adopted to compute the set-point 
temperature. 
 
2.3.2. Integration of the controller into the simulation 
model  

The simulation model was performed in the 
Simulink environment. Starting from the basic version 
of the model of a heating system (provided by 
Simulink libraries), some modifications were applied 
to implement a PMV virtual sensor and an air 
temperature controller based on such virtual sensor, as 
presented in the previous section. 

 
 

 
 

Fig. 4. PID controller applied to the simulation model. 

( )| , , , , , 0set set r a a clT pmv T t v p I M =
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The PMV virtual sensor was modelled with 
two different working modes: i) as a traditional sensor, 
without the real-time metabolic rate measurement; ii) 
as an innovative system with the real-time 
measurement of the metabolic rate as proposed in this 
paper. Thus, the virtual test bench was used to evaluate 
the impact of the PMV uncertainty on the management 
of the building as a function of the metabolic rate error 
that can occur when constant values are used instead 
of continuous monitoring. 

The basic version of the model consists of a 
heater, a thermostat and a lumped parameter model of 
the house. The heat exchanges between indoor and 
outdoor environments through walls, windows and 
roof were modelled with the electrical-analog method 
for transient heat-flow, as already done in (Revel et al., 
2012). Fig. 5 shows the modified simulation model. 

To perform the test, the PID element was 
integrated into the simulation model of the heating 
house network. First, the initial value of the air 
temperature inside the house was set at 23 °C. The 
heater provides, or does not provide, sensible heat 
according to the set-point temperature. To run the 
control algorithm, the computation of the PMV was 
provided by a virtual sensor that gathered 
environmental variables from the model. In particular, 
the air temperature (ta) was assumed to be equal to the 
room temperature of the modelled house. Since the 
simulation approach did not include mass balance and 
moisture, the air velocity (va) was set at a fixed value 
of 0.02 m/s and relative humidity (RH) at a value 
varying around 50% with a uniform distribution with 
a range of ±2.5%.  

Given that the simulation was performed for 
the heating season, the clothing insulation (Icl) was 
fixed at 0.85 clo. Finally, the evaluation of the mean 
radiant temperature (tr) was done with the angle factor 
methodology in agreement with the ISO 7726 (ISO 
7726, 1998). The mean radiant temperature was 
computed from the indoor surface temperatures of the 
room and weighted  with the view factors calculated  

 

for a central position of a subject with respect to the 
surrounding walls. 

During the simulation, the virtual sensor 
calculated the PMV index continuously and, 
consequently, the set-point temperature was computed 
according to Eq. (9). 
 
3. Results and discussion 
 

This Section discusses the results obtained 
from the two simulated tests adopting the model 
described in the previous paragraph. In both tests, an 
indoor temperature control was performed, based on a 
set-point temperature (i.e., derived from a PMV 
index). The difference was in the M parameter, which 
is one of the six quantities for the calculation of the 
PMV value. In the first case, a dynamic profile of M 
was considered (i.e., the time-dependent value 
obtained with the wearable sensor and the application 
of the methodology previously discussed). The second 
case refers to a constant profile of M (i.e., a fixed value 
for the entire duration of the test, as generally done in 
the state of the art).  

In this experiment, a typical 8-hour working 
day was simulated. The dynamic profile of the 
metabolic rate was modelled considering the activities 
which can be performed during the working hours. 
The metabolic rate profile used for both tests is shown 
in Fig. 6. The profile simulated an initial activity 
typical of office work (1.2 met) with a gradual increase 
in the metabolic rate reaching 1.6 met, which 
corresponds to standing activities, and, after keeping 
this rate for 4 hours, the profile returned to the initial 
value. The values of M were derived from the 
compendium of metabolic activities provided by 
ISO7730 (2005). Fig. 7 shows the trends of the set-
point and air temperatures when performing control 
strategy with a dynamic M (Fig. 7a) and with a 
constant M (Fig. 7b). As said in Section 2.3.1, the set-
point temperature depends on the PMV evaluation, 
which is significantly affected by the metabolic rate. 

 
 

 
 

Fig. 5. Simulation model for the Heating house network. 
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Fig. 6. Dynamic profile for the metabolic rate adopted in the simulation 
 

  
(a) (b) 

 
Fig. 7. Trends of the set-point temperatures and the air temperatures obtained by performing the two different controls: 

(a) with a dynamic profile of the metabolic rate; (b) with a constant value of the metabolic rate 
 

It is possible to observe that, in winter 
conditions, when implementing a control strategy that 
uses a constant value of M (Fig. 7b), the indoor air 
temperature is kept almost constant. The heater 
provides continuous heat to the environment, while 
the real need of the occupant would be having a lower 
air temperature, as shown in Fig. 7a, where the use of 
a dynamic M for the set-point calculation provided a 
variation of Tset. In fact, an increase in M induces an 
increase in energy production by the human body that 
turns out to provide a lower comfort air temperature, 
therefore a lower Tset. The set-point temperature 
gradually decreased as a function of the metabolic rate 
increase. Conversely, when the metabolic rate 
decreased, the system responded correctly by 
calculating a higher set-point temperature to restore 
the comfort condition. Comparing the two situations 
of the case study proposed, the use of a constant 

metabolic rate instead of real-time monitoring led to 
an error in the PMV calculation propagated as an error 
of 3.2°C in the calculation of Tset. This error provided 
an impact in terms of comfort delivered to the 
occupants and efficiency in the management of the 
building. Analysing the PMV calculated by the virtual 
sensor in both tests, the control based on a dynamic M 
provided an average PMV close to zero (mean value 
of PMV: 0.03±0.09; Fig. 8a - Dynamic M). 
Conversely, the control with a constant value of M 
(Fig. 8a - Constant M) turned out to provide an 
environment near to the slightly warm sensation 
(mean value of PMV: 0.3±0.3). This happened 
because the controller was not able to recognize the 
lower heating needs due to the increased occupants’ 
activity.  

As a consequence, overheating occurred, 
which turned out to provide worse comfort conditions 
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with higher energy consumption, as demonstrated in 
Fig. 8b, where the energy consumptions recorded with 
a dynamic M (Fig. 8b – Dynamic M) and with a 
constant value of M (Fig. 8b – Constant M) are 
reported. The first simulation (dynamic M) turned out 
to have an energy consumption of 5.8 kWh against the 
8.6 kWh of the second test (constant M). 

This result leads to the conclusion that the 
monitoring of occupants’ activity optimized the 
comfort management and produced a gap of energy 
consumption between the ideal control of the heating 
system and the traditional one. In the case proposed, a 
gap of 33% of energy saving was registered. 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 8. (a) Trends of the PMV obtained by performing both 
the simulation cases;(b) energy consumption obtained by 

performing both control algorithms with a dynamic M 
and a constant M 

4. Conclusions 
 

Providing comfortable environments is a key 
aspect to enhance well-being and productivity of 
building occupants. In this perspective, this work 
investigates how the employment of wearable devices 
could improve the use of Fangers’ model when 
applied to real-time monitoring and control, when the 
possibility to measure physiological parameters to 
estimate occupants’ activity is given. To this end, a 
new methodology that allows the real-time 
measurement of the metabolic rate M has been 
developed. 

A wearable device, which provides 
simultaneous acquisition of physiological quantities, 
has been adopted and different indicators have been 
obtained as a function of the number of physiological 
parameters taken into consideration. Finally, the 
curves to estimate the metabolic rate depending on the 
indicators IN5, IN4, IN3 have been obtained. The 
measurement technique proposed provided an 
uncertainty of ±0.2 met, referring to the sample 
population and the tasks conducted in the experiment 
presented. To test its potential use in building 
operation (monitoring and control), a test has been 
performed in a virtual environment to compare the 
results obtained by adopting a PMV-based approach 
to control the indoor air temperature in two different 
cases. Two simulations have been conducted for the 
heating season: one using a controller based on a 
dynamic M profile and another one based on a static 
M. In both tests, the occupants’ activity has been 
simulated for a profile ranging from 1.2 met to 1.6 
met. The results have showed that, under the 
conditions of the test proposed, the use of a constant 
M provided an error of 3.2°C in the calculation of the 
PMV-based comfort temperature with respect to the 
calculation performed with a dynamic M, with a 
consequent condition of overheating and a gap 
between ideal and actual management in the order of 
32%. Thus, the integration of the real-time metabolic 
rate measurement into PMV-based controllers could 
reduce the systematic error introduced by the standard 
and constant activity value assigned to a building. The 
benefit of the approach proposed has been 
demonstrated in terms of improved comfort delivered 
to the occupants and optimised building energy 
management. 

To validate the preliminary results obtained in 
this work, further research will be carried out taking 
into account a wider sample population (i.e., in terms 
of age and contextual factors). Moreover, considering 
that the wearable device adopted in the tests is 
accurate but expensive, and generally not used by 
occupants in daily life, different solutions (e.g., 
smartwatches) will be tested with the proposed 
methodology. 
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