ADSORPTION OF Zn$^{2+}$ AND Ni$^{2+}$ IONS FROM AQUEOUS SOLUTION ONTO Phyllanthus debilis: KINETICS & EQUILIBRIUM STUDIES

Mohammad Aslam1,2,*, Pugazhendi Arulazhagan1, Sumbul Rais2, Masood Alam2

1Center of Excellence in Environmental Studies, King Abdulaziz University P.O.Box: 80216, Jeddah-21589, KSA
2Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India

Abstract

This work evaluates the potential of Phyllanthus debilis for the adsorption of Zn$^{2+}$ and Ni$^{2+}$ ions using synthetic solutions. Adsorption experiments were performed in order to examine the effect of pH, contact time, biomass concentration and initial metal ion concentration in the removal process, in a batch mode. The results revealed that the adsorption is highly pH dependent. The adsorption of Zn$^{2+}$ and Ni$^{2+}$ ions were concentration dependent and increased from 2.446 to 8.688 mg/g for Zn$^{2+}$ and 2.26 to 7.744 mg/g for Ni$^{2+}$ with an increase of concentration from 25 to 100 mg/L at pH 5. The adsorption mechanism was examined by FTIR technique and SEM. Isotherm and kinetic studies were carried out for the adsorption of Zn$^{2+}$ and Ni$^{2+}$ ions from aqueous solution using P. debilis at different initial metal ion concentration. Isotherms results were amply fitted by the Langmuir model, determining a monolayer maximum adsorption capacity (q_m) of P. debilis biomass equal to 8.97 mg g$^{-1}$ and 11.39 mg g$^{-1}$ for Zn$^{2+}$ and Ni$^{2+}$ ions respectively, and suggesting a functional group limited adsorption process. In order to evaluate kinetic parameters for Zn$^{2+}$ and Ni$^{2+}$ adsorption, Lagergren's first-order, pseudo-second-order, Elovich kinetic model and intra-particle diffusion models were explored. It was found that the pseudo-second order kinetic model fitted very well the experimental data. The rate determining step is described by intra-particle diffusion model.

Key words: adsorption, heavy metals, isotherm, kinetics, Phyllanthus debilis

Received: September, 2012; Revised final: April, 2013; Accepted: April, 2013

* Author to whom all correspondence should be addressed: e-mail: aslam312@gmail.com