EFFECTS OF ADDITION OF RED MUD ON EMISSION OF GREENHOUSE GASES AND AMMONIA FROM FULL-SCALE SWINE MANURE WINDROW COMPOSTING

Chenyang Zhao¹², Hefeng Wan¹³, Yuansong Wei¹⁴, Shenghui Han⁴, Zhen Ge¹⁵, Bofu Zheng³, Hongmei Li²

¹Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
²Capital University of Economics and Business, Beijing 100070
³College of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
⁴Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
⁵Beijing University of Civil Engineering and Architecture School of Environment and Energy Engineering, Beijing 100044, China

Abstract

It is of great concern to reduce greenhouse gases (GHG) and ammonia (NH₃) emissions from animal manure composting in China. The purpose of this study was to investigate effects of adding red mud on emissions of GHG (methane (CH₄), nitrous oxide (N₂O)) and NH₃ in full-scale swine manure windrow composting. Two full-scale swine manure windrow composting experiments were carried out to compare emission of GHG and NH₃ with and without addition of red mud. Results showed that the addition of modified red mud reduced N₂O emissions by 4.03%, however, it did not help reduce CH₄ emissions (51.65% higher than that of the control test). Ammonia emission from both the experimental and the control tests were similar. The addition of modified red mud was useful to conserve nitrogen and phosphorus because the contents of total nitrogen and total phosphorus in the compost of the experiment test were higher than the control test. It was also found that turning was useful to reduce CH₄ emissions, i.e. 51.72% reduction of CH₄ emission after turning compared to before turning. However, turning resulted in an increased N₂O emission flux by 23.15 times in the experiment test and 15.31 times in the control test, respectively.

Key words: ammonia, greenhouse gas, red mud, swine manure composting

Received: March, 2016; Revised final: September, 2016; Accepted: October, 2016