Environmental Engineering and Management Journal

March 2015, Vol.14, No. 3, 709-717 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

DEGRADATION AND ADSORPTION BEHAVIOR OF DIBUTYL PHTHALATE IN METHANOGENIC PHASE REFUSE

Chengran Fang^{1,2*}, Yuyang Long², Dongsheng Shen²

¹Research Institute of Eco-environmental Science, School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China ²Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

Abstract

The degradation and adsorption behavior of dibutyl phthalate (DBP) in methanogenic phase refuse was investigated through laboratory microcosm experiments. The results showed that the half-life of DBP in the sterilized refuse was 5.9 times higher than in unsterilized samples, but that it decreased by 35.8% when dominant bacterial strains were added. Different concentrations of DBP did not have obvious effects on its degradation. The half-lives of DBP were decreased by 53.0%, 37.2% and 20.8% when the refuse moisture increased from 20%, 40% and 60% to 80%, respectively. The pH of refuse was an important factor influencing DBP biodegradation, with the optimal pH being around 7.0. The optimal temperature for DBP degradation in refuse was around 30°C. In addition, the Freundlich model fits the adsorption and desorption isotherm of DBP for refuse with *n* values that suggest nonlinear adsorption characteristics. The free energy change ΔG value (-23.5 kJ mol⁻¹) indicates that the adsorption of DBP on refuse was a physical reaction. Desorption hysteresis was observed in the DBP desorption experiments. Overall, the results indicate that DBP may accumulate in refuse, and that its transformation and bio-availability may be limited under landfill conditions.

Key words: adsorption, degradation, dibutyl phthalate, refuse

Received: November, 2013; Revised final: February, 2015; Accepted: February, 2015

^{*} Author to whom all correspondence should be addressed: e-mail: fangchengr@163.com; Phone: +86-571-85070518; Fax: +86-571-85070518