BIO-MECHANICAL LEACHING OF URANIUM FROM LOW GRADE BLACK SHALE

Fozia Anjum1, Shazia Anwer Bukhari2, Muhammad Shahid3, Ata Akcil4, Arifa Tahir5, Hawa Z.E. Jaafar6, Muhammad Zia-Ul-Haq5*, Iosif Samota7

1Department of Chemistry, Government College University, Faisalabad-38000, Pakistan
2Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad-38000, Pakistan
3Department of Biochemistry, University of Agriculture, Faisalabad-380400, Pakistan
4Department of Mining Engineering, Mineral Processing Division (Mineral-Metal Recovery and Recycling Research Group), Suleyman Demirel University, TR32260, Isparta, Turkey
5Department of Environmental Science, Lahore College for Women University Lahore, Pakistan
6Department of Crop Science, Faculty of Agriculture, 43400 UPM Serdang, Selangor, Malaysia
7Faculty of Medicine, Transilvania University of Brasov, Romania

Abstract

The present study was designed to determine the sound effects of ultrasonic treatment and the biologically mediated extraction of uranium from low grade black shale. Low grade uranium was subjected to fungal treatments assisted by sonication by conventional methods. In situ fungal leaching of black shale with different fungal strains in the presence of molasses as growth substrate resulted in highest leaching yield of uranium by Phoma tropica (57.73%) compared to Penicillium chrysogenum (32.30%), Penicillium citrinum (25.59%) and Aspergillus niger (24.23%). Ultrasonication treatment to the growth medium for the fungus improved the leaching yield of uranium with A. niger having more pronounced effects of ultrasonic waves (159%) as compared to other fungi. Phoma tropica resulted in reasonably high concentration of 62.59% in shaking mode using orange pulp as substrate and exceeded to 73.47 % by ultrasound treatment. Maximum effect of ultrasonic waves (52.68%) was found in A. niger, whereas Aspergillus flavus was least effected by ultrasonic waves.

Key words: bioleaching, fungus, organic acids, uranium, ultrasonic waves

Received: November, 2014; Revised final: February, 2015; Accepted: February, 2015

* Author to whom all correspondence should be addressed: e-mail: ahirzia@gmail.com, hawazej@gmail.com; Phone: +6-03-8947-4821; Fax: +6-03-8947-4918