FACTORS AFFECTING BIOLOGICAL SULPHATE REDUCTION IN TANNERY WASTEWATER TREATMENT

Alberto Mannucci1, Giulio Munz1, Gualtiero Mori2, Claudio Lubello1

1University of Florence, Department of Civil and Environmental Engineering, Via Santa Marta 3, 50139, Florence, Italy
2Consorzio Cuoiodepur, Via Arginale Ovest 8, 56020, San Romano, Pisa, Italy

Abstract

A pilot scale Upflow Anaerobic Filter (UAF) treating tannery wastewaters was operated for 160 days. The UAF was fed with low COD/SO4^2- ratio (SO4^2- = 1810 mg L^{-1}, COD_{total} = 2530 mg L^{-1}) for the investigation of sulphate and COD removal as a function of substrates limitation and ammonia and sulphide inhibition. Sulphate-reducing bacteria (SRB) out-competed methanogenic bacteria due to the low influent COD/SO4^2- ratio, the high concentration of sulphide and the presence of inhibiting compounds in tannery wastewater. An average sulphate removal of 53% and an average COD removal of 42% were obtained. Ammonia and sulphide concentrations were found to play a major role in the process, and their effect was quantified. A simplified mathematical model was calibrated under semi-steady conditions and no substrate limitation, and used to describe sulphide and ammonia inhibition. Half-inhibition constants for ammonia (K_{NH4}) and sulphide (K_{HS}) of 180 mg L^{-1} and 480 mg L^{-1}, respectively, were obtained. No improvements of the biodegradability between the untreated tannery wastewater and the UAF effluent were observed through respirometric tests.

Key words: ammonia inhibition, hydrogen sulphide, sulphate reduction, tannery wastewater, upflow anaerobic filter

Received: June 2012; Revised final: February, 2013; Accepted: March, 2013

* Author to whom all correspondence should be addressed: E-mail: alberto.mannucci@diea.unifi.it; Phone: +39 055 4796458; Fax +39 055 490300