PREDICTION OF RATE CONSTANTS FOR NITRATE RADICAL REACTIONS USING A SVM MODEL BASED ON DENSITY FUNCTIONAL THEORY

Xinliang Yu1,2*, Jiyong Deng1, Bing Yi1

1Hunan Institute of Engineering, Department of Chemistry and Chemical Engineering, Xiangtan, 411101 Hunan, China
2Hunan University, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Changsha, 410082 Hunan, China

Abstract

In the present paper, support vector machines (SVMs) are used to develop a quantitative structure-activity relationships (QSAR) model for the reaction rate constants (-\log k_{NO3}) of 115 heterogeneous organic compounds, through reaction with nitrate radicals (NO\textsubscript{3}•) in the troposphere. Two quantum chemical descriptors used as the inputs for the SVM model were calculated with density functional theory (DFT), at the B3LYP level of theory with 6-31G(d) basis set. The best predictions were obtained with the Gaussian radical basis kernel ($C=4$, $\varepsilon=0.15$ and $\gamma=3$). The average root-mean square (RMS) error for the prediction of k_{NO3} is 0.502 log units, indicating good robustness and predictive ability. The SVM model, reported here, shows better statistical characteristics compared to existing QSAR models.

Key words: density functional theory, quantum chemical, quantitative structure-activity relationships, rate constant, support vector machine

Received: August 2011; Revised final: May, 2012; Accepted: June, 2012

*Author to whom all correspondence should be addressed: E-mail: yxl@hnie.edu.cn; Phone: +86 731 58680049; Fax: +86 731 58680125