TAKAGI-SUGENO ALGORITHM FOR GLOBAL SOLAR IRRADIATION USING AIR TEMPERATURE DATA

Remus Şt. Boata, Marius Paulescu*

West University of Timisoara, Faculty of Physics, 4 V. Parvan Ave, 300223 Timisoara, Romania

Abstract

Air temperature is certainly the most measured surface meteorological parameter and accurate forecasting of air temperature is usually performed worldwide. This fact inspired the idea that a predicted value of air temperature may be used as input in solar radiation air temperature-based models, aiming to generate the reference solar radiation year or to forecast solar irradiation. Following this, a Takagi-Sugeno fuzzy model for estimating global solar irradiation via air temperature data is reported here. This is intended to be a simple and accurate tool for solar engineering use. Since air temperature-based models are sensitive to the origin locations, an approach for enlarging the area of application is presented. A critical assessment of the model performance against measured data is conducted, with overall results demonstrating a level of accuracy suitable for most practical applications.

Key words: air temperature, fuzzy logic, model performance, solar irradiation

Received: August, 2011; Revised final: July, 2012; Accepted: July, 2012

* Author to whom all correspondence should be addressed: e-mail: marius@physics.uvt.ro; Phone/Fax: +40-256-592383