REDUCTIVE DECHLORINATION OF POLYCHLORINATED BIPHENYLS (PCBs) BY MEANS OF NANOSCALE ZERO-VALENT NICKEL-IRON (NZVNI) PARTICLES

Andrea Negroni¹, Giulio Zanaroli¹*, Marta Vignola¹, Fabio Fava¹, Hung-Yee Shu²

¹University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), via Terracini 28, 40131 Bologna, Italy
²Hungkuang University, Institute of Environmental Engineering, No. 34 Chung-Chie Rd., Shalu, Taichung County 433, Taiwan, ROC

Abstract

Polychlorinated biphenyls (PCBs) are toxic and recalcitrant compounds that can be reductively dechlorinated in the presence of expensive catalyzers, such as bimetallic Fe/Pd nanosized particles. Other Pd-free zerovalent metallic and bimetallic systems, such as Nanoscale Zero Valant Iron (NZVI) and Nanoscale Zero Valant Nickel-Iron (NZVNI) particles, are cheaper and able to promote the dechlorination of aliphatics and aromatics. In this paper, we investigated the dechlorination capability of NZVI (1.67g Fe⁰/L) and NZVNI (1.67g Fe⁰/L and 0.88g Ni⁰/L) particles towards 2,3,4,5-CB (2 mg/L) in water and methanol/water 30% (v/v) solution at room temperature. NZVI proved ineffective in 2,3,4,5-CB dechlorination under both the above-mentioned conditions. On the contrary, NZVNI dechlorinated 7.1±1.8 % and 27.7±0.4 % of the 2,3,4,5-CB occurring in water and in methanol/water solution, respectively, in 8 weeks of incubation. Dechlorination occurred via preferential removal of the less sterically hindered chlorine in *meta* position 5 and proceeded by removing chlorines in *para* position and in *meta* position 3.

Key words: Nanoscale Zero Valant Iron particles (NZVI), Nanoscale Zero Valant Nickel-Iron particles (NZVNI), Polychlorinated Biphenyls (PCBs), reductive dechlorination

Received: April, 2012; Revised final: September, 2012; Accepted: September, 2012