SPECTROPHOTOMETRIC PARAMETERS FOR ORGANIC MATTER CHARACTERIZATION IN RAW AND TREATED SURFACE WATER

Smaranda Masu1*, Georgeta Burtică2, Florica Manea2, Ilie Piso3

1National R & D Institute for Industrial Ecology Branch of Timișoara, 1 Regina Maria Square, 300004 Timișoara, Romania
2“Politehnica” University of Timișoara, 2 Victoriei Square, 300006 Timișoara, Romania
3SECOM Company, Carol I 53 Street, Drobeta-Turnu Severin, Romania

Abstract

This study aimed to assess the coagulation performance using simple aluminum sulfate (Alum) and pre-hydrolyzed polyaluminum chloride (PACl) coagulation agents by conventional global parameters, i.e., turbidity and organic matter expressed by total organic carbon (TOC) and chemical oxygen demand (COD), and non-conventional spectrophotometric parameters. Non-conventional spectrophotometric parameters, expressed as absorbance recorded at different wavelengths, i.e., A254, A280, A365, allowed distinguishing some components classes with different degrees of activation, which are parts of natural organic matter (NOM) from drinking water. Monitoring the A254/A280 ratio in coagulation stage allowed determining the removal efficiency of some undesirable humic compounds with increased activity, which exhibited the trihalomethanes (THMs) formation potential during disinfection stage. Monitoring the A254/A365 ratio in coagulation stage allowed determining the removal efficiency of some undesirable humic compounds with hydrophobic character. All experimental results showed that the specific absorbance (SUVA) parameter expressed as the ratio between A254 and dissolved organic carbon (DOC), can be used successfully to characterize NOM from raw water and predicts DOC removal in coagulation step. The correlation between conventional and non-conventional parameters showed a better performance of coagulation performance using PACl in comparison with Alum coagulation agent.

Key words: coagulation, drinking water, natural organic matter, SUVA, UV absorbance

Received: November, 2010; Revised final: April, 2011; Accepted: April, 2011

* Author to whom all correspondence should be addressed: e-mail: smarandamasu@yahoo.com; Phone/Fax: 0256-220369