PRELIMINARY STUDY OF SOIL COMPOSITION FROM BALKAN ENDEMIC NEPHROPATHY AREAS, USING A GC-MS METHOD

Lavinia Paula Drăghia, Alexandra Teodora Lukinich-Gruia*, Camelia Oprescu, Virgil Paunescu, Călin Adrian Tatu

1OncoGen Centre, County Emergency Clinical Hospital "Pius Branzeu", Liviu Rebreanu Blvd. 156, Timisoara, RO-300736, Romania
2Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, RO-300041, Romania
3Department of Environmental and Food Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, RO-300041, Romania
4Department of Biology and Environmental Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, RO-300041, Romania

Abstract

Balkan endemic nephropathy (BEN) is a chronic kidney disease occurring predominantly in certain rural villages from Balkan Peninsula, including Romania. Peculiar environmental factors, such as drinking water, organic contaminants derived from coal, plant toxins, mycotoxins, heavy metals have been proposed to be causing the disease. Still, one of these etiological factors stands out: Aristolochia clematitis L., a plant that contains aristolochic acids (AAs) known as carcinogenic and nephrotoxic compounds. These phytotoxins are geochemically stable in BEN areas’ soils and could enter the human food chain after being accumulated by crop plants. The aim of the present study was to examine the composition of soil and soil organic matter (SOM) samples from BEN endemic and nonendemic areas, using a simple and rapid microwave methanolic extraction method followed by gas-chromatography coupled with mass spectrometry (GC-MS) analysis. The results indicated similarities across all samples, both from endemic and nonendemic areas. A common compound (aristolone) was detected in samples where Aristolochia plants were present nearby the collecting area or collected simultaneously with the soils, therefore we can assume that this compound was transferred from plant parts into the soil.

Key words: aristolone, Balkan endemic nephropathy, gas chromatography-mass spectrometry, soil, soil organic matter

Received: January, 2019; Revised final: March, 2019; Accepted: May, 2019