

"Gheorghe Asachi" Technical University of Iasi, Romania

RESEARCH PROGRESS ON MANGANESE-CERIUM-BASED SCR CATALYST FOR DENOX AND ITS RESISTANCE TO SO2 POISONING

Jinfeng Han¹, Yu Xie², Biao Wang^{2*}, Shengdong Zhang², Xiaole Han²

¹Department of Geo-Environmental Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea ²Zibo Ecological and Environment Bureau, Zibo, Shandong, PR China

Abstract

When the concentration of nitrogen oxides (NO_x) in the atmosphere exceeds the self-purification capacity of the environment, it leads to serious environmental issues such as acid rain, photochemical smog, and ozone layer depletion. Additionally, NO_x also participates in the formation of air pollutants, such as PM_{2.5} and O₃, posing significant threats to human health and ecological balance. Ammonia selective catalytic reduction of NO_x (NH₃-SCR) is one of the most effective technologies for controlling NO_x emissions, with the catalyst playing a crucial role. This paper briefly introduces the NH₃-SCR denitrification reaction mechanism, the catalyst SO₂ poisoning mechanism, and the restrictive relationship between SO₂ poisoning and catalyst activity. The focus of this paper lies in summarizing recent advancements in sulfur-resistant manganese-cerium-based catalysts, offering valuable insights for the design of future-oriented low-temperature NH₃-SCR catalysts.

Key words: manganese-cerium-based catalyst, NOx, selective catalytic reduction, SO2 poisoning resistance

Received: October, 2023; Revised final: August, 2024; Accepted: October, 2024

 $^{^*} Author to whom all correspondence should be addressed: e-mail: 001 wangbiao@163.com; Phone: +86-533-6458020\\$