OPTIMIZING THE PROCESS OF DEPOLLUTION THROUGH THERMAL ABSORPTION OF SOILS CONTAMINATED WITH CRUDE OIL

Dorina Pop*, Valer Micle, Ioana Monica Sur

Faculty of Materials and Environment Engineering, Departament: Environment Engineering and Entrepreneurship of Sustainable Development of the Technical University of Cluj–Napoca, Bd. Muncii, No. 103–105, 400641, Cluj–Napoca, Romania

Abstract

This paper presents the results of the experimental researches regarding the optimization of the decontamination process through the technology of thermal desorption of soils contaminated with crude oil. The optimization was performed for the following desorption parameters: heating temperature of the soil and the treatment duration (by increasing the temperature from 300°C to 350°C and decreasing the treatment duration from 10, 15 and 20 minutes to 5, 10 and 15 minutes). The economic calculation of the decontamination process was performed for the purpose of emphasizing the efficiency of thermal desorption. The experimental researches were performed on soils with loamy sand texture, loamy texture and loamy clay texture. Following the researches, it was found that the contamination degree, the texture and the treatment duration influence the thermal desorption efficiency. The analysis of how the texture influences the process of depolluting soils contaminated with various concentrations of crude oil, reveals that the loamy-sand texture presents higher efficiency, as compared to the loamy and loamy-clay textures. Moreover, it was shown that the highest efficiency is obtained by treating the loamy-sand soil for 15 minutes at 350°C.

Key words: crude oil, pollution, soil, thermal desorption

Received: August, 2014; Revised final: January, 2015; Accepted: January, 2015

*Author to whom all correspondence should be addressed: e-mail: dddorinaa@yahoo.com; Phone: 0754617776