PHOTOCATALYTIC ACTIVITY OF Ag/TiO$_2$–P25-MODIFIED CEMENT: OPTIMIZATION USING TAGUCHI APPROACH

Mohammad A. Behnajady1, Sara Bimeghdar1, Hamed Eskandarloo2

1Department of Chemistry, College of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2School of Chemistry, College of Science, University of Tehran, Tehran, Iran

Abstract

In this study, Ag/TiO$_2$–P25 nanoparticles prepared via photodeposition method and its textural properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), and N$_2$ physisorption techniques. The cements modified with TiO$_2$–P25 and Ag/TiO$_2$–P25 nanoparticles were immobilized on tile plates, and their photocatalytic activity was evaluated versus the removal of Erioglaucine as the model organic pollutant. The Ag/TiO$_2$–P25-modified cement showed the highest photocatalytic activity compared to TiO$_2$–P25 modified cement due to the positive effect of silver in trapping photogenerated electrons at conduction band of TiO$_2$. Also, the effect of operational variables such as initial Erioglaucine concentration, irradiation time, and UV–light intensity on the photocatalytic activity of Ag/TiO$_2$–P25-modified cement was investigated and optimized using the Taguchi approach. The optimum operational conditions were found to be: initial Erioglaucine concentration of 5 mg L$^{-1}$, irradiation time of 90 min and UV–light intensity of 55.9 W m$^{-2}$.

Key words: Ag/TiO$_2$–P25, fixed–bed system, modified cement, photocatalytic removal, taguchi approach

Received: April, 2014; Revised final: July, 2014; Accepted: July, 2014