ANALYSIS OF THE CONTINUOUS MEASUREMENTS OF PM\textsubscript{10} AND PM\textsubscript{2.5} CONCENTRATIONS IN BEIRUT, LEBANON

Wehbeh Farah1*, Myriam Mrad Nakhlé2,5, Maher Abboud3, Nelly Ziade4, Isabella Annesi-Maesano5, Rita Zaarour6, Nada Saliba6, Georges Germanos1, Najat Aoun Saliba7, Alan L. Shihadeh8, Jocelyne Gerard6

1Physics Department, Saint Joseph University of Beirut, Beirut, Lebanon
2Biology Department, Saint Joseph University of Beirut, Beirut, Lebanon
3Chemistry Department, Saint Joseph University of Beirut, Beirut, Lebanon
4Rheumatology Department, Saint Joseph University of Beirut, Beirut, Lebanon
5EPAR, Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136 INSERM & UPMC Paris 6, Sorbonnes Universities, Medical School Saint-Antoine, Paris, France
6Geography Department, Saint Joseph University of Beirut, Beirut, Lebanon
7Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon
8Chemistry Department, American University of Beirut, Beirut, Lebanon

Abstract

Atmospheric concentrations of PM\textsubscript{2.5} and PM\textsubscript{10} were measured in Beirut, Lebanon, for a period of 12 months. The daily average concentrations of PM\textsubscript{10} and PM\textsubscript{2.5} were found to be 51.3 ± 33.1 and 30.3 ± 9.4 µg.m-3, respectively, with corresponding maximum values of 359.7 and 208.6 µg.m-3. The annual average concentrations of PM\textsubscript{10} and PM\textsubscript{2.5} exceeded the World Health Organization’s standards by 150% and 200%, respectively. The mean concentration of coarse particles (PM\textsubscript{10–2.5}) was found to be 41% of the average PM\textsubscript{10}, suggesting that the site was also influenced by re-suspended surface dust and soil. The mean PM\textsubscript{2.5}/PM\textsubscript{10} ratio for the entire study period was 0.61 ± 0.12. This indicates that in Beirut, PM\textsubscript{2.5} accounts for about 61% of PM\textsubscript{10}. Such a large fraction of fine particles could have considerable effect on health; thus, it is necessary to quantify its impact. Daily concentrations of PM\textsubscript{10} and PM\textsubscript{2.5} exceeded the upper threshold limit on 133 and 129 days, respectively, representing 39% and 38% of the entire sample, respectively. These findings indicate the important role dust events play within this area. Concentrations of PM\textsubscript{2.5} were highly correlated with NO\textsubscript{2}, whereas concentrations of PM\textsubscript{10} and PM\textsubscript{10–2.5} were not associated with any gaseous pollutant. Regression analysis showed that 93% of PM\textsubscript{2.5} and 43% of PM\textsubscript{10} particle mass concentrations were derived from road traffic exhaust in Beirut.

Key words: air quality, dust event, health effect, particulate matter, regression analysis

Received: October, 2013; Revised final: September, 2014; Accepted: September, 2014

*Author to whom all correspondence should be addressed: e-mail: wehbeh.farah@usj.edu.lb; Phone: +96 1142 1374; Fax: +96 1453 2657